Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a large variety of infections in both immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). Species of the S. apiospermum complex are able to chronically colonize the CF airways suggesting pathogenic mechanisms allowing persistence and growth of these fungi in the respiratory tract. Few putative virulence factors have been purified and characterized so far in the S. apiospermum complex including a cytosolic Cu,Zn-superoxide dismutase (SOD) and a monofunctional catalase (catalase A1). Upon microbial infection, host phagocytes release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by degradation of the hydrogen peroxide. Here, we identified the S. boydii catalase A1 gene (CATA1) and investigated its expression in response to the environmental conditions encountered in the CF airways and to the oxidative stress. Results showed that S. boydii CATA1 gene expression is not affected by hypoxia, hypercapnia or pH changes. In contrast, CATA1 gene was overexpressed in response to a chemically induced oxidative stress with a relative gene expression 37-fold higher in the presence of 250 μM H(2)O(2), 20-fold higher with 250 μM menadione and 5-fold higher with 2 mM paraquat. Moreover, S. boydii CATA1 gene expression progressively increased upon exposure to activated THP-1-derived macrophages, reaching a maximum after 12 h (26 fold). Activated HL60-derived neutrophils and activated human peripheral blood neutrophils more rapidly induced S. boydii CATA1 gene overexpression, a maximum gene expression level being reached at 75 min (17 fold) and 60 min (15 fold), respectively. In contrast expression of the gene encoding the Cu,Zn-SOD (SODC gene) was not affected by H(2)O(2), menadione, paraquat or in co-culture with phagocytic cells. These results suggest that S. boydii CATA1 gene is highly stimulated by the oxidative burst response whereas SODC gene is constitutively expressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.funbio.2015.09.007 | DOI Listing |
Int J Food Microbiol
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Microb Pathog
November 2024
Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey.
The intensification of livestock farming has led to the widespread use of massive amounts of antibiotics worldwide. Poultry production, including white meat, eggs and the use of their manure as fertiliser, has been identified as one of the most crucial reservoirs for the emergence and spread of resistant bacteria, including E. coli in poultry as an important opportunistic pathogen representing the greatest biological hazard to human and wildlife health.
View Article and Find Full Text PDFActa Vet Hung
December 2024
1Perm Federal Research Centre, Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, 614081, Russia.
The use of antibiotics in agriculture and subsequent environmental pollution are associated with the emergence and spread of multidrug-resistant (MDR) bacteria including Escherichia coli. The aim of this study was to detect antimicrobial resistance, resistance genes and mobile genetic elements of 72 E. coli strains isolated from faeces of healthy farm animals.
View Article and Find Full Text PDFBMC Infect Dis
July 2024
Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya.
Background: Understanding the source of typhoid infections and the genetic relatedness of Salmonella Typhi (S. Typhi) by cluster identification in endemic settings is critical for establishing coordinated public health responses for typhoid fever management. This study investigated the genotypic diversity, antibiotic resistance mechanisms, and clustering of 35 S.
View Article and Find Full Text PDFVet Microbiol
July 2024
John Paul II Catholic University of Lublin, Institute of Biological Sciences, Department of Molecular Biology, Konstantynów 1J, Lublin 20-708, Poland.
The transmission of antibiotic-resistant bacteria among wild animal species may hold significant epidemiological implications. However, this issue is seldom explored due to the perceived complexity of these systems, which discourages experimental investigation. To address this knowledge gap, we chose a configuration of birds and mammals coexisting in an urban green area as a research model: the rook Corvus frugilegus and the striped field mouse Apodemus agrarius.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!