Stem cell therapy may provide a novel therapeutic method for the replacement and regeneration of damaged neural cells in the central nervous system. However, insufficient stem cell migrating into the injured regions limits its applications. Although tetramethylpyrazine (TMP) originally isolated from Ligusticum walliichi (Chuanxiong) has been widely used to treat ischemic stroke in the clinic for many years because of its role in neuroprotection, how TMP impacts the migration of neural progenitor/precursor cells (NPCs) and what is the underlying cellular and molecular mechanism remain largely unknown. Here, we found that TMP promoted NPC migration through increasing the expression and secretion of stromal cell-derived factor 1 (SDF-1), a chemokine that has been well demonstrated to direct NPC cell trafficking, in a dose-dependent fashion as analyzed by using different methods. The role of TMP in NPC migration could be inhibited by AMD 3100, a chemokine (C-X-C motif) receptor 4 (CXCR4) antagonist. Further investigation of the molecular mechanisms revealed that TMP treatment rapidly activated phosphatidylinositol 3-kinase (PI3K)/Akt, protein kinase C (PKC), and extracellular signal-regulated kinase (ERK), but not Pyk2, in NPCs. NPC migration could be blocked by using pharmacological inhibitors for these signaling pathways such as LY294002 (a PI3K inhibitor), Myr-ψPKC (a PKC inhibitor), and an ERK1/2 inhibitor. Furthermore, TMP enhanced NPC migration toward the ischemic region in the MCAO rat model. Our findings provide mechanistic insights into the role of TMP in treating the neuropathological diseases, which suggest that TMP may be used as a potent drug for improving NPC migration in stem cell-based therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-015-9551-1DOI Listing

Publication Analysis

Top Keywords

npc migration
20
migration neural
8
phosphatidylinositol 3-kinase
8
stem cell
8
tmp
8
role tmp
8
migration
7
npc
6
tetramethylpyrazine promotes
4
promotes migration
4

Similar Publications

Background: Nasopharyngeal cancer (NPC) is prevalent in Southeast Asia and North Africa, which is generally associated with limited treatment options and poor patient prognosis.

Objective: Ferroptosis is a recently observed cell death modality and has been shown to link to the efficacy of different anti-cancer treatments, thus offering opportunities to the development of novel therapies. This study aims to investigate the potentiating effects of COX-2 inhibitors on ferroptosis in nasopharyngeal cancer.

View Article and Find Full Text PDF

The transcriptional regulatory factors binding to the polymorphic site C-1888T in the promoter region of the palate, lung, and nasal epithelium clone (PLUNC) gene were identified to investigate whether the C-1888T polymorphic site affects the transcriptional regulation and function of PLUNC gene. Three genotypes of C-1888T polymorphic locus were screened from established nasopharyngeal carcinoma (NPC) cells, and the mRNA expression levels of PLUNC gene in different genotypes were detected. The respective transcription factors that were more likely to bind with A or G in SNP were predicted by biological information and preliminarily verified in vitro by gel electrophoresis migration rate analysis.

View Article and Find Full Text PDF

Nuclear pore permeability and fluid flow are modulated by its dilation state.

Mol Cell

December 2024

Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:

Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.

View Article and Find Full Text PDF

EMC2 suppresses ferroptosis via regulating TFRC in nasopharyngeal carcinoma.

Transl Oncol

December 2024

Shengli Clinical Medical College of Fujian Medical University, Department of Otolaryngology, Head and Neck Surgery, Fujian Provincial Hospital, Fuzhou 350001, China. Electronic address:

Background: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy with poorly understood underlying molecular mechanisms. Ferroptosis, a form of programmed cell death, is not fully elucidated in NPC.

Method: We conducted quantitative proteomics to detect dysregulated proteins in NPC tissues.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is a malignant tumor with a high incidence rate in certain regions. MicroRNA (miRNA/miR)-22-3p is implicated in the regulation of tumorigenesis and progression. However, the biological role of miRNA-22-3p in the progression of NPC remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!