Background: Population genetics predicts that tight linkage between new and/or pre-existing beneficial and deleterious alleles should decrease the efficiency of natural selection in finite populations. By decoupling beneficial and deleterious alleles and facilitating the combination of beneficial alleles, recombination accelerates the formation of high-fitness genotypes. This may impose indirect selection for increased recombination. Despite the progress in theoretical understanding, interplay between recombination and selection remains a controversial issue in evolutionary biology. Even less satisfactory is the situation with crossover interference, which is a deviation of double-crossover frequency in a pair of adjacent intervals from the product of recombination rates in the two intervals expected on the assumption of crossover independence. Here, we report substantial changes in recombination and interference in three long-term directional selection experiments with Drosophila melanogaster: for desiccation (~50 generations), hypoxia, and hyperoxia tolerance (>200 generations each).

Results: For all three experiments, we found a high interval-specific increase of recombination frequencies in selection lines (up to 40-50% per interval) compared to the control lines. We also discovered a profound effect of selection on interference as expressed by an increased frequency of double crossovers in selection lines. Our results show that changes in interference are not necessarily coupled with increased recombination.

Conclusions: Our results support the theoretical predictions that adaptation to a new environment can promote evolution toward higher recombination. Moreover, this is the first evidence of selection for different recombination-unrelated traits potentially leading, not only to evolution toward increased crossover rates, but also to changes in crossover interference, one of the fundamental features of recombination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661966PMC
http://dx.doi.org/10.1186/s12915-015-0206-5DOI Listing

Publication Analysis

Top Keywords

crossover interference
12
recombination
9
selection
9
directional selection
8
beneficial deleterious
8
deleterious alleles
8
selection lines
8
interference
6
crossover
5
experimental evolution
4

Similar Publications

Background: The effect of oral Cannabidiol (CBD) on interference during learning and memory (L&M) in healthy human volunteers has not been studied.

Method: A two-arm crossover, randomized, double-blind, placebo-controlled trial was conducted at Colorado State University Pueblo (CSU Pueblo) to evaluate the effects of 246 mg oral CBD on L&M in healthy adults. Among 57 healthy volunteers enrolled, 35 were included in the analyses.

View Article and Find Full Text PDF

Meiotic recombination is a powerful source of haplotypic diversity, and thus plays an important role in the dynamics of short-term adaptation. However, high-throughput quantitative measurement of recombination parameters is challenging because of the large size of offspring to be genotyped. One of the most efficient approaches for large-scale recombination measurement is to study the segregation of fluorescent markers in gametes.

View Article and Find Full Text PDF

Dynamic molecular architecture of the synaptonemal complex.

Sci Adv

January 2025

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.

During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive.

View Article and Find Full Text PDF

Background: Essential tremor (ET) is characterized by action tremor of the arms, which can interfere substantially with daily activities. Pharmacotherapy may be ineffective or associated with side effects, and stereotactic surgery is invasive. Hence, new accessible treatment options are urgently needed.

View Article and Find Full Text PDF

This pilot randomized crossover study aimed to compare the effects of stimulating various transcranial direct current stimulation (tDCS) target sites to improve dual-task performance in patients with Parkinson's disease (PD). Nineteen patients with idiopathic PD completed four sessions of 2 mA anodal tDCS for 20 min at randomly assigned sites: the primary motor cortex (M1), left dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex, and sham stimulation. Anodal M1 tDCS induced statistically significant improvements in single-task and cognitive dual-task timed up and go test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!