Decades of antibiotic use or misuse has resulted in antibiotic resistance in lactic acid bacteria, a group of common culture starters and probiotic microorganisms. This has urged researchers to study how lactic acid bacteria respond to antibiotics, so as to have a better strategy to identify and predict the antibiotic-resistant bacteria. This study aimed to characterize the biochemical profiles of Lactococcus lactis responding to antibiotics using surface-enhanced Raman spectroscopy (SERS). Lactococcus lactis exposed to antibiotics was mixed with 50-nm gold nanoparticles for subsequent SERS measurements. The SERS spectra analyzed by principal component analysis showed no significant change after 30 min of antibiotic treatment, whereas distinct changes were clearly observed after 60 and 90 min of antibiotic treatment. Different antibiotics induced different spectral changes, and these changes revealed the detailed biochemical information of cellular responses. This study demonstrates that the SERS method developed not only senses the changes in the bacterial cell wall, but also reveals details of the biochemical profiles, which help us to understand how lactic acid bacteria respond to antibiotics, as well as to set a base for the detection of antibiotic susceptibility of bacteria by SERS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-015-9184-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!