The oligonucleotide binding fold (OB-fold) is a small structural motif present in many proteins. It is originally named for its oligonucleotide or oligosaccharide binding properties. These proteins have been identified as essential for replication, recombination and repair of DNA. We have successfully purified a protein contains OB-fold from the stem of Tinospora cordifolia, a medicinal plants of north India. Stems were crushed and centrifuged, and fraction obtained at 60% ammonium sulphate was extensively dialyzed and applied to the weak anion exchange chromatography on Hi-Trap DEAE-FF in 50mM Tris-HCl buffer at pH 8.0. Eluted fractions were concentrated and applied to gel filtration column to get pure protein. We observed a single band of 20-kDa on SDS-PAGE. Finally, the protein was identified as OB-fold by MALDI-TOF. The purified OB-fold protein was characterized for its secondary structural elements using circular dichroism (CD) in the far-UV region. Generally the OB-fold has a characteristic feature as five-stranded beta-sheet coiled to form a closed beta- barrel. To estimate its chemical stability, guanidinium chloride-induced denaturation curve was followed by observing changes in the far-UV CD as a function of the denaturant concentration. Analysis of this denaturation curve gave values of 8.90±0.25kcalmol(-1) and 3.78±0.18M for ΔGD° (Gibbs free energy change at 25°C) and Cm (midpoint of denaturation), respectively. To determine heat stability parameters of OB-fold protein, differential scanning calorimetry was performed. Calorimetric values of ΔGD°, Tm (midpoint of denaturation), ΔHm (enthalpy change at Tm), and ΔCp (constant-pressure heat capacity change) are 9.05±0.27kcalmol(-1), 85.2±0,3°C, 105±4kcalmol(-1) and 1.6±0.08kcalmol(-1)K(-1). This is the first report on the isolation, purification and characterization of OB-fold protein from a medicinal plant T. cordifolia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2015.11.016DOI Listing

Publication Analysis

Top Keywords

ob-fold protein
16
purification characterization
8
oligonucleotide binding
8
ob-fold
8
protein medicinal
8
medicinal plant
8
tinospora cordifolia
8
denaturation curve
8
midpoint denaturation
8
protein
7

Similar Publications

Impact of ions, pH and the nature of substrate on the structure and activity of a robust single-stranded DNA binding (SSB)-like protein from Phi11.

Arch Microbiol

January 2025

Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.

The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1).

View Article and Find Full Text PDF

R-DeeP/TripepSVM identifies the RNA-binding OB-fold-like protein PatR as regulator of heterocyst patterning.

Nucleic Acids Res

December 2024

Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.

RNA-binding proteins (RBPs) are central components of gene regulatory networks. The differentiation of heterocysts in filamentous cyanobacteria is an example of cell differentiation in prokaryotes. Although multiple non-coding transcripts are involved in this process, no RBPs have been implicated thus far.

View Article and Find Full Text PDF

Human DNA ligase 1 (LIG1) performs the final step in DNA repair and recombination pathways by sealing DNA breaks, and it functions as the main replicative ligase. Hypomorphic LIG1 variants R771W and R641L cause immune deficiencies in LIG1 Syndrome patients. In vitro these LIG1 variants have decreased catalytic efficiency and increased abortive ligation and it is not known if either biochemical defect is sufficient on its own to cause immune deficiency.

View Article and Find Full Text PDF

Templated trimerization of the phage L decoration protein on capsids.

bioRxiv

September 2024

Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd, Storrs, CT, 06269-3125, USA.

The 134-residue phage L decoration protein (Dec) forms a capsid-stabilizing homotrimer that has an asymmetric tripod-like structure when bound to phage L capsids. The N-termini of the trimer subunits consist of spatially separated globular OB-fold domains that interact with the virions of phage L or the related phage P22. The C-termini of the trimer form a three-stranded intertwined spike structure that accounts for nearly all the interactions that stabilize the trimer.

View Article and Find Full Text PDF

Exploring the structural landscape of DNA maintenance proteins.

Nat Commun

September 2024

Genome Integrity, Danish Cancer Institute, Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen, Denmark.

Evolutionary annotation of genome maintenance (GM) proteins has conventionally been established by remote relationships within protein sequence databases. However, often no significant relationship can be established. Highly sensitive approaches to attain remote homologies based on iterative profile-to-profile methods have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!