A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Human Inducible Hsp70: Structures, Dynamics, and Interdomain Communication from All-Atom Molecular Dynamics Simulations. | LitMetric

Human Inducible Hsp70: Structures, Dynamics, and Interdomain Communication from All-Atom Molecular Dynamics Simulations.

J Chem Theory Comput

Computational Biology Service Unit, Cornell Theory Center, Cornell University, Ithaca, New York 14853.

Published: August 2010

The 70 kDa human heat shock protein is a major molecular chaperone involved in de novo folding of proteins in vivo and refolding of proteins under stress conditions. Hsp70 is related to several "misfolding diseases" and other major pathologies, such as cancer, and is a target for new therapies. Hsp70 is comprised of two main domains: an N-terminal nucleotide binding domain (NBD) and a C-terminal substrate protein binding domain (SBD). The chaperone function of Hsp70 is based on an allosteric mechanism. Binding of ATP in NBD decreases the affinity of the substrate for SBD, and hydrolysis of ATP is promoted by binding of polypeptide segments in the SBD. No complete structure of human Hsp70 is known. Here, we report two models of human Hsp70, constructed by homology with Saccharomyces cerevisiae cochaperone protein Hsp110 (open model) and with Escherichia coli 70 kDa DnaK (closed model) and relaxed for several tens to hundreds of nanoseconds by using all-atom molecular dynamics simulations in explicit solvent. We obtain two stable states, Hsp70 with SBD open and SBD closed, which agree with experimental and structural information for ATP-Hsp70 and ADP-Hsp70, respectively. The dynamics of the transition from the open to closed states is investigated with a coarse-grained model and normal-mode analysis. The results show that the conformational change between the two states can be represented by a relatively small number of collective modes which involved major conformational changes in the two domains. These modes provide a mechanistic representation of the communication between NBD and SBD and allow us to identify subdomains and residues that appear to have a critical role in the conformational change mechanism that guides the chaperoning cycle of Hsp70.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct1002169DOI Listing

Publication Analysis

Top Keywords

hsp70
8
all-atom molecular
8
molecular dynamics
8
dynamics simulations
8
binding domain
8
human hsp70
8
conformational change
8
sbd
6
human
4
human inducible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!