How much translational energy atoms and molecules lose in collisions at surfaces determines whether they adsorb or scatter. The fact that hydrogen (H) atoms stick to metal surfaces poses a basic question. Momentum and energy conservation demands that the light H atom cannot efficiently transfer its energy to the heavier atoms of the solid in a binary collision. How then do H atoms efficiently stick to metal surfaces? We show through experiments that H-atom collisions at an insulating surface (an adsorbed xenon layer on a gold single-crystal surface) are indeed nearly elastic, following the predictions of energy and momentum conservation. In contrast, H-atom collisions with the bare gold surface exhibit a large loss of translational energy that can be reproduced by an atomic-level simulation describing electron-hole pair excitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aad4972 | DOI Listing |
Dalton Trans
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
Efficient separation of photogenerated charge carriers is essential for maximizing the photocatalytic efficiency of semiconductor materials in oxygen evolution reactions (OER). This study presents a novel trimetallic photocatalyst, MIL-100(Fe)/TiO/CoO, synthesized through a facile microwave-assisted hydrothermal method followed by atomic layer deposition (ALD). The porous MIL-100(Fe) serves as a support for the sequential deposition of TiO and CoO layers ALD, which enhances electron-hole pair separation and minimizes their recombination.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Georgia Southern University, Statesboro, Georgia 30460, United States.
Persistent phosphor has emerged as a promising candidate for information storage due to rapid accessibility and low-energy requirements. However, the low storage capacity has limited its practical application. Herein, we skillfully designed and developed NaGdGeO:Pb,Tb stimulated phosphor by trace doped Sm.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China.
Crystal-facet heterojunction engineering of mesoporous nanoreactors with highly redox-active represents an efficacious strategy for the transformation of CO into valuable C products (e.g., CH).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Electrical and Information, Jilin Engineering Normal University, Changchun 130052, China.
Phthalocyanine-sensitized TiO significantly enhances photocatalytic performance, but the method of phthalocyanine immobilization also plays a crucial role in its performance. In order to investigate the effect of the binding strategy of phthalocyanine and TiO on photocatalytic performance, a dual-pathway study has been conducted. On the one hand, zinc-tetra (-carbonylacrylic) aminephthalocyanine (Pc) was directly grafted onto the surface of FeO@SiO@TiO (FST).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Laboratory of Electronic Processes, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
The experimental and theoretical study of photovoltage formation in perovskite solar cells under pulsed laser excitation at 0.53 μm wavelength is presented. Two types of solar cells were fabricated on the base of cesium-containing triple cation perovskite films: (1) Cs(FAMA)Pb(IBr) and (2) Cs(FAMA)PbSn(IBr).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!