RNA interference triggers such as short interfering RNA (siRNA) or genetically encoded short hairpin RNA (shRNA) and artificial miRNA (sh-miR) are widely used to silence the expression of specific genes. In addition to silencing selected targets, RNAi reagents may induce various side effects, including immune responses. To determine the molecular markers of immune response activation when using RNAi reagents, we analyzed the results of experiments gathered in the RNAimmuno (v 2.0) and GEO Profiles databases. To better characterize and compare cellular responses to various RNAi reagents in one experimental system, we designed a reagent series in corresponding siRNA, D-siRNA, shRNA and sh-miR forms. To exclude sequence-specific effects the reagents targeted 3 different transcripts (Luc, ATXN3 and HTT). We demonstrate that RNAi reagents induce a broad variety of sequence-non-specific effects, including the deregulation of cellular miRNA levels. Typical siRNAs are weak stimulators of interferon response but may saturate the miRNA biogenesis pathway, leading to the downregulation of highly expressed miRNAs, whereas plasmid-based reagents induce known markers of immune response and may alter miRNA levels and their isomiR composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagrm.2015.11.005 | DOI Listing |
Biomolecules
January 2025
Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1R1, Canada.
Small interfering RNA (siRNA) therapy in acute myeloid leukemia (AML) is a promising strategy as the siRNA molecule can specifically target proteins involved in abnormal cell proliferation. The development of a clinically applicable method for delivering siRNA molecules is imperative due to the challenges involved in effectively delivering the siRNA into cells. We investigated the delivery of siRNA to AML MOLM-13 cells with the use of two lipid-substituted polyethyleneimines (PEIs), a commercially available reagent (Prime-Fect) and a recently reported reagent with improved lipid substitution (PEI1.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institute for Biomedicine and Glycomics, School of Environment and Science, Griffith University, 46 Don Young Road, Brisbane QLD 4111, Australia., Brisbane, QLD 4111, Australia.
While many genetic tools exist for zebrafish, this animal model still lacks robust gene-silencing and microRNA-delivery technologies enabling spatio-temporal control and traceability. We have recently demonstrated that engineered pri-miR backbones can trigger stable gene knockdown and/or express microRNA(s) of choice in this organism. However, this miRNA-expressing technology presents important limitations.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy.
Here, a pulmonary formulation based on lipid-polymer hybrid nanoparticles carrying small interfering RNA (siRNA) was developed to realize a RNA interference-based therapy to treat respiratory diseases. Toward this aim, a new copolymer was synthesized, by functionalization of the α,β-poly(-2-hydroxyethyl)-d,l-aspartamide with 35 mol % of 1,2-bis(3-aminopropylamino)ethane, 0.4 mol % of fluorescent dye, and 4.
View Article and Find Full Text PDFMol Biol Rep
October 2024
RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
Background: MicroRNAs (miRNAs), which are key players in cancer cell resistance to chemotherapy, notably target genes associated with drug resistance. While miRNA-128-3p is recognized for its involvement in various cancers, its specific role in tumorigenesis and cisplatin (CIS) resistance in tongue cancer remains unclear. Therefore, in the present study, we endeavoured to elucidate the significance of miR-128-3p in tongue squamous cell carcinoma (TSCC), shedding light on its intricate functions and underlying mechanisms.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
D epartment of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
The design, analysis and mining of large-scale 'omics studies with the goal of advancing biological and biomedical understanding require use of a range of bioinformatics tools, including approaches tailored to needs specific to a given species and/or technology. The FlyRNAi database at the Drosophila RNAi Screening Center and Transgenic RNAi Project (DRSC/TRiP) Functional Genomics Resources (https://fgr.hms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!