A single nucleotide polymorphism in the plasma PAF-AH enzyme, i.e., G994T, which causes the substitution of Val at amino acid 279 with Phe (V279F), has been found in the Japanese population. This enzyme preferentially degrades oxidatively modulated or truncated phospholipids; therefore, it has been suggested that this enzyme may prevent the accumulation of proinflammatory and proatherogenic oxidized phospholipids. This hypothesis is supported by the higher prevalence of the V279F mutation in patients with asthmatic and atherosclerotic diseases, as compared with healthy controls. This mutation is rare in the Caucasian population. The plasma PAF-AH mass and enzyme activity are distributed over a wide range in the plasma and they are positively correlated with low-density lipoprotein (LDL) cholesterol. However, several clinical studies in the Caucasian population have suggested that this enzyme has the opposite role. This enzyme plays an active role in the development and progression of atherosclerosis via proinflammatory and proatherogenic lysophosphatidylcholine and oxidized fatty acids produced through the oxidation of LDL by this enzyme. Thus, plasma PAF-AH is a unique enzyme with dual roles in human inflammatory diseases. In this chapter, on the basis of recent findings we describe the association between a naturally occurring missense mutation in plasma PAF-AH and human diseases especially including atherosclerosis and asthma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.enz.2015.09.003 | DOI Listing |
J Lipid Res
January 2025
Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria. Electronic address:
Phospholipids containing oxidized esterified PUFA residues (OxPLs) are increasingly recognized for multiple biological activities and causative involvement in disease pathogenesis. Pharmacokinetics of these compounds in blood plasma is essentially not studied. Human plasma contains both genuine phospholipases A (PAF-AH (also called Lp-PLA) and sPLA) and multifunctional enzymes capable of removing sn-2 residues in native and oxidized PLs (LCAT, PRDX6).
View Article and Find Full Text PDFAntioxidants (Basel)
February 2023
Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain.
Owing to the high risk of recurrence, identifying indicators of carotid plaque vulnerability in atherothrombotic ischemic stroke is essential. In this study, we aimed to identify modified LDLs and antioxidant enzymes associated with plaque vulnerability in plasma from patients with a recent ischemic stroke and carotid atherosclerosis. Patients underwent an ultrasound, a CT-angiography, and an F-FDG PET.
View Article and Find Full Text PDFBiol Pharm Bull
February 2023
Faculty of Pharma-Sciences, Teikyo University.
Platelet-activating factor acetylhydrolase (PAF-AH) hydrolyzes an acetyl ester at the sn-2 position of platelet-activating factor (PAF), thereby mediating a variety of biological functions. PAF-AH is found in three isoforms: Type I PAF-AH (PAF-AH I) and Type II PAF-AH (PAF-AH II) are intracellular enzymes whereas plasma PAF-AH is characterized by association with lipoprotein in plasma. PAF-AH I forms a tetramer constituted by two catalytic subunits (α1 and α2) with β regulatory subunits.
View Article and Find Full Text PDFInt J Mol Sci
December 2022
Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain.
Electronegative low-density lipoprotein (LDL(-)) is a minor modified fraction of human plasma LDL with several atherogenic properties. Among them is increased bioactive lipid mediator content, such as lysophosphatidylcholine (LPC), non-esterified fatty acids (NEFA), ceramide (Cer), and sphingosine (Sph), which are related to the presence of some phospholipolytic activities, including platelet-activating factor acetylhydrolase (PAF-AH), phospholipase C (PLC), and sphingomyelinase (SMase), in LDL(-). However, these enzymes' activities do not explain the increased Sph content, which typically derives from Cer degradation.
View Article and Find Full Text PDFAdv Exp Med Biol
May 2022
The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing, China.
HDL has various protein components, including enzymes, complement components, apolipoproteins, protease inhibitors, etc. In addition to proteins, lipids are also a significant component of HDL. These components and their structure determine the function of HDL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!