Negative allosteric modulation of GABAA receptors inhibits facilitation of brain stimulation reward by drugs of abuse in C57BL6/J mice.

Psychopharmacology (Berl)

Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Room 746, P.O. Box 980613, Richmond, VA, 23298-0613, USA.

Published: February 2016

Rationale: There is an emerging body of evidence that implicates a crucial role of γ-aminobutyric acid subtype A (GABAA) receptors in modulating the rewarding effects of a number of abused drugs. Modulation of GABAA receptors may therefore represent a novel drug-class independent mechanism for the development of abuse treatment pharmacotherapeutics.

Objectives: We tested the hypothesis that the GABAA receptor benzodiazepine-site (BDZ) negative modulator Ro15-4513 would reduce the reward-related effects of three pharmacologically dissimilar drugs; toluene vapor, d-methamphetamine, and diazepam using intracranial self-stimulation (ICSS) in mice. We also examined whether Ro15-4513 attenuated dopamine release produced by d-methamphetamine in an in vivo microdialysis procedure.

Results: Ro15-4513 abolished ICSS reward facilitation produced by all three abused drugs at Ro15-4513 doses which had no effect on ICSS when administered alone. In contrast, the BDZ antagonist flumazenil only attenuated the ICSS-facilitating effects of diazepam. Administration of the same dose of Ro15-4513 which abolished drug-facilitated ICSS produced a 58 % decrease in d-methamphetamine-stimulated dopamine in the nucleus accumbens of mice relative to d-methamphetamine alone.

Conclusions: These results demonstrate that negative modulation of GABAA receptors can produce profound reductions in reward-related effects of a diverse group of drugs that activate the mesolimbic reward pathway through different mechanisms. These data suggest that pharmacological modulation of GABAA receptors may represent a viable pathway for the development of drug abuse pharmacotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825185PMC
http://dx.doi.org/10.1007/s00213-015-4155-zDOI Listing

Publication Analysis

Top Keywords

gabaa receptors
20
modulation gabaa
16
abused drugs
8
receptors represent
8
reward-related effects
8
ro15-4513 abolished
8
gabaa
6
receptors
5
drugs
5
ro15-4513
5

Similar Publications

Neuropharmacological potential of Mimosa tenuiflora in adult zebrafish: An integrated approach to GABAergic and serotonergic neuromodulation.

Behav Brain Res

January 2025

Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321, Fortaleza, Ceará, Brazil; Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, CECITEC/UECE - Center for Education, Science and Technology of the Inhamuns Region. R. Seis, 15 - Bezerra de Sousa, Tauá, Ceará, Brazil. Electronic address:

Mimosa tenuiflora ("jurema-preta") is traditionally used in folk medicine for various diseases. The study investigated the neuropharmacological potential of Mimosa tenuiflora bark fraction (FATEM) in adult zebrafish. This included the acute toxicity (LC50) of FATEM (0.

View Article and Find Full Text PDF

Gene Deficiency of δ Subunit-Containing GABA Receptor in mPFC Lead Learning and Memory Impairment in Mice.

Neurochem Res

January 2025

Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.

Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAR in freely moving mice.

View Article and Find Full Text PDF

Aims: N-Demethylsinomenine (NDSM) demonstrates good analgesic efficacy in preclinical pain models. However, how NDSM exerts analgesic actions remains unknown.

Methods: We examined the analgesic effects of NDSM using both pain-evoked and pain-suppressed behavioral assays in two persistent pain models.

View Article and Find Full Text PDF

Effects of ketamine and propofol on muscarinic plateau potentials in rat neocortical pyramidal cells.

PLoS One

January 2025

Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway.

Propofol and ketamine are widely used general anaesthetics, but have different effects on consciousness: propofol gives a deeply unconscious state, with little or no dream reports, whereas vivid dreams are often reported after ketamine anaesthesia. Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist, while propofol is a γ-aminobutyric-acid (GABAA) receptor positive allosteric modulator, but these mechanisms do not fully explain how these drugs alter consciousness. Most previous in vitro studies of cellular mechanisms of anaesthetics have used brain slices or neurons in a nearly "comatose" state, because no "arousing" neuromodulators were added.

View Article and Find Full Text PDF

Gastrointestinal dysfunction is a severe and common complication in diabetic patients. Some evidence shows that gamma-aminobutyric acid (GABA) and glutamate contribute to diabetic gastrointestinal abnormalities. Therefore, we examined the impact of prolonged treatment with insulin and magnesium supplements on the expression pattern of GABA type A (GABA-A), GABA-B, and N-methyl-D-aspartate (NMDA) glutamate receptors as well as nitric oxide synthase 1 (NOS-1) in the stomach of type 2 diabetic rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!