Neurophysiological effects of needle trauma and intraneural injection in a porcine model: a pilot study.

Acta Anaesthesiol Scand

Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.

Published: March 2016

Background: Neurophysiological data are lacking in the research of nerve injury during regional anaesthesia. The aim of this pilot study was to establish a large animal model in order to test the hypothesis that needle trauma alone or in combination with intraneural injection would result in measurable nerve injury.

Methods: The experimental set-up was elaborated in four pre-test animals. In the remaining animals (n = 11), 22 sciatic nerves were randomly assigned to one of four groups: needle trauma (n = 5) generated by ultrasound-guided forced needle advancement; intraneural injection of 2.5 ml saline (n = 6); intraneural injection of 5 ml saline (n = 6); extraneural injection of 5 ml saline (n = 5) as control group. Compound muscle action potential (CMAP) amplitudes as well as latencies were taken as outcome parameter and monitored over 180 min. Sonographic assessments were performed simultaneously.

Results: Following needle trauma and intraneural injection, CMAP amplitudes declined significantly over 180 min (P < 0.001). The control group showed no electrophysiological alterations. At 60 min, decreases in amplitude were significant after needle trauma (P = 0.04) and intraneural injection of 2.5 ml (P = 0.045), and highly significant after injection of 5 ml (P = 0.006) when compared to controls. Sustained nerve swelling was observed after intraneural injection, but not after needle trauma and perineural injection.

Conclusions: Isolated mechanical trauma caused by forced needle advancement alone or in combination with intraneural injection of saline was followed by a significant decline in CMAP amplitudes indicating conduction block due to disruption of myelin or axon loss (pseudo-conduction block).

Download full-text PDF

Source
http://dx.doi.org/10.1111/aas.12657DOI Listing

Publication Analysis

Top Keywords

intraneural injection
32
needle trauma
24
injection saline
16
cmap amplitudes
12
injection
10
needle
8
intraneural
8
trauma intraneural
8
pilot study
8
combination intraneural
8

Similar Publications

Conductive hydrogel luminal filler for peripheral nerve regeneration.

Biomaterials

January 2025

School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea. Electronic address:

Peripheral nerve injuries impair quality of life due to pain and loss of sensory and motor functions. Current treatments like autografts and nerve guidance conduits (NGCs) have limitations in functional restoration. Luminal fillers can enhance the effectiveness of NGCs by providing beneficial intraneural environments.

View Article and Find Full Text PDF

Risk of intrafascicular spread after deliberate ex vivo intraneural injections of brachial plexus nerve roots.

Br J Anaesth

January 2025

Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA; CEU-San-Pablo University School of Medicine, Madrid, Spain; Department of Anesthesiology, Madrid-Montepríncipe University Hospital, Madrid, Spain. Electronic address:

Background: We investigated the intraneural spread of injected fluid in brachial plexus nerve roots, examining the potential for intrafascicular spread and identifying influencing factors.

Methods: Twelve deliberate ultrasound-guided intraneural injections were performed at the ventral rami of the brachial plexus nerve roots at their exits from the neuroforamina in six fresh, unembalmed, cryopreserved human cadavers. A 22-G, 30-degree bevel echogenic regional anaesthesia needle was used.

View Article and Find Full Text PDF
Article Synopsis
  • Inadvertent intraneural injections during peripheral nerve blocks are common, and this study compares two detection methods: injection pressure monitoring and ultrasound imaging.
  • The research involved anesthesiologists conducting intraneural injections on fresh cadaver arms, measuring both pressure and sonographic images to evaluate outcomes.
  • Results showed that pressure monitoring detected intraneural injection much earlier than ultrasound (after just 0.2 mL vs. 1.2 mL for swelling), confirming that pressure monitoring is a more sensitive technique.
View Article and Find Full Text PDF

Intraneural Device for Electrostimulation of Vagus Nerve in Rats: A Feasibility Study for Modulating Glucose Tolerance.

Neuromodulation

November 2024

Laboratory of Energy and Data Science, Division of Smart Sector Integration, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome, Italy. Electronic address:

Objectives: This study introduces EMPATIC (Electro-Modulation of PAncreaTic Islet Cells), a miniaturized intraneural device designed for transversal insertion into small nerves with a mean diameter of 400 μm. EMPATIC aims to modulate glucose tolerance through intraneural vagus nerve stimulation (VNS) in rats.

Materials And Methods: EMPATIC design was optimized to fit into the cervical vagus nerve of rats and was developd through thin film microtechnologies.

View Article and Find Full Text PDF

New prospects for Zr-immuno-PET in brain applications - Alpha-synucleinopathies.

Nucl Med Biol

November 2024

Amsterdam UMC location Vrije Universiteit Amsterdam, Dept Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands. Electronic address:

Article Synopsis
  • * Background research highlights how Zr-immuno-PET imaging can effectively visualize therapeutic antibodies utilizing transferrin-mediated transport across the blood-brain barrier and emphasizes the significance of alpha-synuclein in diseases like Parkinson’s.
  • * The methodology involved conjugating antibodies with a chelator and using various analyses, including radioim
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!