A highly specific microRNA-mediated mechanism silences LTR retrotransposons of strawberry.

Plant J

Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy.

Published: January 2016

Small RNAs are involved in a plethora of functions in plant genomes. In general, transcriptional gene silencing is mediated by 24-nucleotide siRNAs and is required for maintaining transposable elements in a silenced state. However, microRNAs are not commonly associated with transposon silencing. In this study, we performed small RNA transcriptome and degradome analyses of the Rosaceae model plant Fragaria vesca (the woodland strawberry) at the genome-wide level, and identified miRNA families and their targets. We report a highly specific mechanism of LTR retrotransposon silencing mediated by an abundant, ubiquitously expressed miRNA (fve-miR1511) generated from a single locus. This miRNA specifically targets LTR retroelements, silencing them post-transcriptionally by perfectly pairing to the highly conserved primer binding site for methionyl initiator tRNA that is essential for reverse transcription. We investigated the possible origins of this miRNA, and present evidence that the pre-miR1511 hairpin structure probably derived from a locus coding for tRNA(iM) (et) through a single microinversion event. Our study shows that this miRNA targets retrotransposons specifically and constitutively, and contributes to features such as genome stability, size and architecture in a far more direct way than previously thought.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.13090DOI Listing

Publication Analysis

Top Keywords

highly specific
8
silencing mediated
8
mirna targets
8
mirna
5
specific microrna-mediated
4
microrna-mediated mechanism
4
mechanism silences
4
silences ltr
4
ltr retrotransposons
4
retrotransposons strawberry
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!