Novel disulfide-containing polypeptide toxin was discovered in the venom of the Tibellus oblongus spider. We report on isolation, spatial structure determination and electrophysiological characterization of this 41-residue toxin, called ω-Tbo-IT1. It has an insect-toxic effect with LD50 19 μg/g in experiments on house fly Musca domestica larvae and with LD50 20 μg/g on juvenile Gromphadorhina portentosa cockroaches. Electrophysiological experiments revealed a reversible inhibition of evoked excitatory postsynaptic currents in blow fly Calliphora vicina neuromuscular junctions, while parameters of spontaneous ones were not affected. The inhibition was concentration dependent, with IC50 value 40 ± 10 nM and Hill coefficient 3.4 ± 0.3. The toxin did not affect frog neuromuscular junctions or glutamatergic and GABAergic transmission in rat brains. Ca(2+) currents in Calliphora vicina muscle were not inhibited, whereas in Periplaneta americana cockroach neurons at least one type of voltage gated Ca(2+) current was inhibited by ω-Tbo-IT1. Thus, the toxin apparently acts as an inhibitor of presynaptic insect Ca(2+) channels. Spatial structure analysis of the recombinant ω-Tbo-IT1 by NMR spectroscopy in aqueous solution revealed that the toxin comprises the conventional ICK fold containing an extended β-hairpin loop and short β-hairpin loop which are capable of making "scissors-like mutual motions".
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4661699 | PMC |
http://dx.doi.org/10.1038/srep17232 | DOI Listing |
IEEE Access
November 2024
University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
The achievable spatial resolution of C metabolic images acquired with hyperpolarized C-pyruvate is worse than H images typically by an order of magnitude due to the rapidly decaying hyperpolarized signals and the low gyromagnetic ratio of C. This study is to develop and characterize a volumetric patch-based super-resolution reconstruction algorithm that enhances spatial resolution C cardiac MRI by utilizing structural information from H MRI. The reconstruction procedure comprises anatomical segmentation from high-resolution H MRI, calculation of a patch-based weight matrix, and iterative reconstruction of high-resolution multi-slice C MRI.
View Article and Find Full Text PDFFront Immunol
December 2024
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
Background: The use of programmed death-1 (PD-1) inhibitors in the neoadjuvant setting for patients with resectable stage III NSCLC has revolutionized this field in recent years. However, there is still 40%-60% of patients do not benefit from this approach. The complex interactions between immune cell subtypes and tertiary lymphoid structures (TLSs) within the tumor microenvironment (TME) may influence prognosis and the response to immunochemotherapy.
View Article and Find Full Text PDFSmall
December 2024
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China.
In the era of atomic manufacturing, the precise manipulation of atomic structures to engineer highly active catalytic sites has become a central focus in catalysis research. Dual-atom catalysts (DACs) have garnered significant attention for their superior activity, selectivity, and stability compared to single-atom catalysts (SACs). However, a comprehensive review that integrates geometric and electronic factors influencing DAC performance remains limited.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
The heterogeneity of extracellular vesicles (EVs) surface information represents different functions, which is neglected in previous studies. In this study, a label-free SERS analysis approach is demonstrated to study fundamental EV biological and physical information heterogeneity by matching specific sizes of nano-enhanced particles. This strategy reveals informative, comprehensive, and high-quality SERS spectra of the overall exosome surface, and effectively circumvents the key information loss caused by the spatial resistance of NPs binding to the 293 exosomes' concave structure.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, India.
This study probes the vibronic interactions in the photoelectron spectra of CAlGe, exploring its six excited electronic states through an approach that combines the electronic structure calculations and the quantum nuclear dynamics. Central to this investigation is utilizing a model diabatic Hamiltonian, which allows for the exact evaluation of Hamiltonian parameters and fitting potential energy cuts (PECs). Notably, the analysis of these PECs uncovers pronounced nonadiabatic effects within the photoelectron spectra, emphasized by the presence of multiple conical intersections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!