A passively-ventilated plastic-wrapped composting system initially developed for biosecure disposal of poultry mortalities caused by avian influenza was adapted and tested to assess its potential as an emergency disposal option for disease-related swine mortalities. Fresh air was supplied through perforated plastic tubing routed through the base of the compost pile. The combined air inlet and top vent area is ⩽∼1% of the gas exchange surface of a conventional uncovered windrow. Parameters evaluated included: (1) spatial and temporal variations in matrix moisture content (m.c.), leachate production, and matrix O2 concentrations; (2) extent of soft tissue decomposition; and (3) internal temperature and the success rate in achieving USEPA time/temperature (T) criteria for pathogen reduction. Six envelope materials (wood shavings, corn silage, ground cornstalks, ground oat straw, ground soybean straw, or ground alfalfa hay) and two initial m.c.'s (15-30% w.b. for materials stored indoors, and 45-65% w.b. to simulate materials exposed to precipitation) were tested to determine their effect on performance parameters (1-3). Results of triple-replicated field trials showed that the composting system did not accumulate moisture despite the 150kg carcass water load (65% of 225kg total carcass mass) released during decomposition. Mean compost m.c. in the carcass layer declined by ∼7 percentage points during 8-week trials, and a leachate accumulation was rare. Matrix O2 concentrations for all materials other than silage were ⩾10% using the equivalent of 2m inlet/vent spacing. In silage O2 dropped below 5% in some cases even when 0.5m inlet/vent spacing was used. Eight week soft tissue decomposition ranged from 87% in cornstalks to 72% in silage. Success rates for achievement of USEPA Class B time/temperature criteria ranged from 91% for silage to 33-57% for other materials. Companion laboratory biodegradation studies suggest that Class B success rates can be improved by slightly increasing envelope material m.c. Moistening initially dry (15% m.c.) envelope materials to 35% m.c. nearly doubled their heat production potential, boosting it to levels ⩾silage. The 'contradictory' silage test results showing high temperatures paired with slow soft tissue degradation are likely due to this material's high density, low gas permeability and low water vapor loss. While slow decomposition typically suggests low microbial activity and heat production, it does not rule out high internal temperatures if the heat produced is conserved. Occasional short-term odor releases during the first 2weeks of composting were associated with top-to-bottom gas flow which is contrary to the typical bottom-to-top flow typically observed in conventional compost piles. In cases where biosecurity concerns are paramount, results of this study show the plastic-wrapped passively-ventilated composting method to have good potential for above-ground swine mortality disposal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2015.11.006 | DOI Listing |
Open Vet J
November 2024
Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia.
Bovine trichomoniasis is a reproductive illness that affects cattle causing pyometra, early to mid-pregnancy miscarriages, and lower birth rates. is a flagellated protozoan which first discovered in France in 1888 and composts three phases during its lifecycle including trophozoite, cyst, and pseudocyst. In addition, several factors contributed to the prevalence of trichomoniasis and fall into three categories are management, cow, and bull-related factors.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China. Electronic address:
Improving lignocellulose degradation and organic matter conversion in agricultural and livestock wastes remains a great challenge. Here, the contribution of humic acid (HA) to lignocellulose degradation was investigated, focusing on the abundance of key microbial species and carbohydrate-active enzymes during aerobic composting. The results demonstrated that the addition of HA not only increased the complexity of the microbial network, but also enhanced the positive interaction between microorganism.
View Article and Find Full Text PDFSci Total Environ
December 2024
College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China. Electronic address:
This study aimed to enhance humification and cadmium (Cd) remediation in compost by investigating the effects of three post-treatments: ultrapure water, citric acid, and ethylenediaminetetraacetic acid disodium (EDTA). The results revealed that the EDTA post-treatment significantly enhanced humification by facilitating an EDTA-Fenton-like system within compost comprising rice straw and river sediment to remediate Cd-contaminated sediment. EDTA post-treatment not only promoted humic substances and humic acid concentrations of up to 66.
View Article and Find Full Text PDFJ Environ Qual
December 2024
Energy and Environmental Sustainability Laboratories, Institute for Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania, USA.
Concerns regarding per- and polyfluoroalkyl substances (PFAS) and their precursors have driven increased research into their sources, impacts, and mitigation strategies, aiming to reduce their prevalence in the environment. While much of this research has centered on known large sources of PFAS (e.g.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China. Electronic address:
The prevalence of antibiotic resistance genes (ARGs) in agricultural soils has garnered significant attention. However, the long-term impacts of various nitroge (N)-substitution fertilization regimes on the distribution of soil ARGs and their dominant drivers in a subtropical triple-cropping system remain largely unexplored. This study employed a metagenomic approach to analyze soil ARGs, microbial communities, mobile genetic elements (MGEs), and viruses from a maize-maize-cabbage rotation field experiment with five different fertilization regimes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!