Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Therapeutic management of liver fibrosis remains an unresolved clinical problem. Activation of hepatic stellate cell (HSC) is a pivotal event in the progression of liver fibrosis. Recent reports have showed that inhibition of activated HSC proliferation contributes to the reversal of liver fibrosis. Interferon regulatory factor 3 (IRF3), one member of the interferon regulatory factor (IRF) family, is recently proven to be a critical modulator in cardiac fibrosis. And accumulating evidence demonstrated that IRF3 plays a crucial role in liver diseases, such as hepatic steatosis, liver inflammation, and alcoholic liver injury. However, the understanding of the function of IRF3 in liver fibrosis remains limited. Our results identified the role of IRF3 in regulating human HSC (LX-2 cell) cell proliferation and apoptosis. The present study indicated that the expression of IRF3 was significantly increased in HSCs in response to TGF-β1 stimulation. Moreover, a stable and unlimited source of human HSC, the LX-2 cell line, transfected with IRF3-siRNA significantly decreases the expression level of type I collagen (Col1a1) and α-smooth muscle actin (α-SMA) in activated LX-2 cells. On the contrary, overexpression of IRF3 gives rise to an upregulation of Col1a1 and α-SMA in LX-2 cells, and further promoted HSC proliferation. Moreover, the inhibition of IRF3 significantly suppressed TGF-β1-induced HSC proliferation and increased its apoptosis. Of note, the present study indicated IRF3 may regulate LX-2 cell proliferation by via AKT signaling pathway. In summary, these observations suggest IRF3 may function as a novel regulator to modulate TGF-β1-induced LX-2 proliferation, at least in part, via AKT signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13105-015-0452-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!