Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
All fish sense acoustic particle motion; some species also sense pressure. Concern over the effects of anthropogenic sounds is increasing the need to monitor acoustic particle motion. Particle motion can be measured directly using vector sensors or calculated from pressure gradients. This article compares three devices that measure particle motion: a three-axis accelerometer, a three-axis velocity sensor, and two 4-element hydrophone arrays. A series of sounds (constant-wave tones, white noise, and Ricker wavelets) were played from a fixed-position projector. The particle motion of sounds from imploding light bulbs was also measured.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-2981-8_82 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!