Addition of ductile polymers to calcium-deficient hydroxyapatite (CDHA)-forming bone cements based on α-tricalcium phosphate (α-TCP) is a promising approach to improve the mechanical performance of α-TCP cements and extend their application to load-bearing defects, which is else impeded by the brittleness of the hardened cement. One suitable polymer is poly-(2-hydroxyethylmethacrylate) (p-HEMA), which forms during cement setting by radical polymerisation of the monomer. In this study the hydration kinetics and the mechanical performance of α-TCP cements modified with addition of different HEMA concentrations (0-50 wt% in the cement liquid) was investigated by quantitative in situ XRD and four-point bending tests. Morphology of CDHA crystals was monitored by scanning electron microscopy. The hydration of α-TCP to CDHA was increasingly impeded and the visible crystal size of CDHA increasingly reduced with increasing HEMA concentration. Modification of the cements by adding 50 wt% HEMA to the cement liquid changed the brittle performance of the hardened cement to a pseudoplastic behaviour, reduced the flexural modulus and increased the work of fracture, while lower HEMA concentrations had no significant effect on these parameters. In such a composite, the extent of CDHA formation was considerably reduced (34.0 ± 1.8 wt% CDHA with 50 % HEMA compared to 54.1 ± 2.4 wt% CDHA in the reference formed after 48 h), while the general reaction kinetics were not changed. In conclusion, while the extent of CDHA formation was decreased, the mechanical properties were noticeably improved by addition of HEMA. Hence, α-TCP/HEMA composites might be suitable for application in some load-bearing defects and have adequate properties for mechanical treatment after implantation, like insertion of screws.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-015-5616-yDOI Listing

Publication Analysis

Top Keywords

reaction kinetics
8
α-tricalcium phosphate
8
mechanical performance
8
performance α-tcp
8
α-tcp cements
8
application load-bearing
8
load-bearing defects
8
hardened cement
8
addition hema
8
hema concentrations
8

Similar Publications

Peroxynitrite (ONOO/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO to determine its role in biological processes.

View Article and Find Full Text PDF

Buchwald-Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C-C cross-couplings.

View Article and Find Full Text PDF

Aryl aldehydes are key synthetic intermediates in the manufacturing of active pharmaceutical ingredients. They are generated on scale (>1000 kg) through the palladium-catalyzed formylation of aryl bromides using syngas (CO/H). The best-in-class catalyst system for this reaction employs di-1-adamantyl--butylphosphine (cataium A), palladium(II) acetate, and tetramethylethylenediamine.

View Article and Find Full Text PDF

Isomer-Effects of Aminophenol Decorated Gold Nanoclusters for HO Photoproduction via Two-Step One-Electron Oxygen Reduction Reaction.

Small

January 2025

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.

Gold (Au) nanoclustersare promising photocatalysts for biomedicine, sensing, and environmental remediation. However, the short carrier lifetime, inherent instability, and unclear charge transfer mechanism hinder their application. Herein, the Au nanoclusters decorated with three different isomers of o-Aminophenol, m-Aminophenol, and p-Aminophenol are synthesized, namely o-Au, m-Au, and p-Au, which achieve efficient hydrogen peroxide (HO) photoproduction through two-step one-electron oxygen reduction reaction (ORR).

View Article and Find Full Text PDF

In sodium-ion batteries, the layered transition metal oxides used as cathode often experience interlayer sliding of interlayer spacing and lattice variations during charge/discharge, leading to structural damage and capacity degradation. To address this challenge, a La doping strategy guided by Bayesian optimization has been employed to prepare the high-performance O3-NaNiMnCuLaO (NMCL) cathode material. Density functional theory calculations reveal that the O 2p orbital overlaps with the t orbital of transition metals in NMCL, facilitating the formation of Na-O-La bonds and promoting the oxygen redox reaction kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!