Daily exposure of humans to nanoparticles from edible plants is inevitable, but significant advances are required to determine whether edible plant nanoparticles are beneficial to our health. Additionally, strategies are needed to elucidate the molecular mechanisms underlying any beneficial effects. Here, as a proof of concept, we used a mouse model to show that orally given nanoparticles isolated from ginger extracts using a sucrose gradient centrifugation procedure resulted in protecting mice against alcohol-induced liver damage. The ginger-derived nanoparticle (GDN)-mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the expression of a group of liver detoxifying/antioxidant genes and inhibited the production of reactive oxygen species, which partially contributes to the liver protection. Using lipid knock-out and knock-in strategies, we further identified that shogaol in the GDN plays a role in the induction of Nrf2 in a TLR4/TRIF-dependent manner. Given the critical role of Nrf2 in modulating numerous cellular processes, including hepatocyte homeostasis, drug metabolism, antioxidant defenses, and cell-cycle progression of liver, this finding not only opens up a new avenue for investigating GDN as a means to protect against the development of liver-related diseases such as alcohol-induced liver damage but sheds light on studying the cellular and molecular mechanisms underlying interspecies communication in the liver via edible plant-derived nanoparticles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662062 | PMC |
http://dx.doi.org/10.3402/jev.v4.28713 | DOI Listing |
Food Funct
January 2025
Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China.
derived extracellular vesicles (LAB-EVs) are nanosized particles secreted from during fermentation, and therefore exist universally in fermented foods such as yogurt, pickles, and fermented beverages. In this study, three LAB-EVs were prepared using a simple scalable method, and then their structures, compositions, and biosafety properties were characterized. The protective properties and potential mechanisms of action of the LAB-EVs against alcoholic liver disease were studied.
View Article and Find Full Text PDFNutrients
January 2025
College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China.
Background/objectives: With the improvement of living standards, alcoholic liver disease caused by long-term drinking has been a common multiple disease. Probiotic interventions may help mitigate liver damage caused by alcohol intake, but the mechanisms need more investigation.
Methods: This study involved 70 long-term alcohol drinkers (18-65 years old, alcohol consumption ≥20 g/day, lasting for more than one year) who were randomly assigned to either the BC99 group or the placebo group.
Antioxidants (Basel)
January 2025
College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China.
Acute alcoholic liver injury (AALI) remains a significant global health concern, primarily driven by oxidative stress. This study investigated the protective mechanisms of BC99 against alcohol-induced oxidative stress using a dual model in rats and Caenorhabditis elegans. In rats, excessive alcohol was predominantly metabolized via the CYP2E1 pathway, leading to severe oxidative stress.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa, 403 001, India. Electronic address:
Ethnopharmacological Relevance: Luffa acutangula var. amara (Roxb.) C.
View Article and Find Full Text PDFJ Med Food
January 2025
Department of Infectious Diseases and Liver Diseases, Ningbo Medical Centre Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.
Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!