Synthesis of Tertiary and Quaternary Amine Derivatives from Wood Resin as Chiral NMR Solvating Agents.

Molecules

Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P. O. Box 55, FI-00014, Helsinki 00100, Finland.

Published: November 2015

Chiral tertiary and quaternary amine solvating agents for NMR spectroscopy were synthesized from the wood resin derivative (+)-dehydroabietylamine (2). The resolution of enantiomers of model compounds [Mosher's acid (3) and its n-Bu₄N salt (4)] (guests) by (+)-dehydroabietyl-N,N-dimethylmethanamine (5) and its ten different ammonium salts (hosts) was studied. The best results with 3 were obtained using 5 while with 4 the best enantiomeric resolution was obtained using (+)-dehydroabietyl-N,N-dimethylmethanaminium bis(trifluoromethane-sulfonimide) (6). The compounds 5 and 6 showed a 1:1 complexation behaviour between the host and guest. The capability of 5 and 6 to recognize the enantiomers of various α-substituted carboxylic acids and their n-Bu₄N salts in enantiomeric excess (ee) determinations was demonstrated. A modification of the RES-TOCSY NMR pulse sequence is described, allowing the enhancement of enantiomeric discrimination when the resolution of multiplets is insufficient.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332576PMC
http://dx.doi.org/10.3390/molecules201119732DOI Listing

Publication Analysis

Top Keywords

tertiary quaternary
8
quaternary amine
8
wood resin
8
solvating agents
8
synthesis tertiary
4
amine derivatives
4
derivatives wood
4
resin chiral
4
chiral nmr
4
nmr solvating
4

Similar Publications

All-carbon quaternary and tertiary stereocenters connected at the C2-position of functionalizable C3-alkylated indole nucleus are commonly occurring frameworks found in many indole alkaloids of medicinal importance. Their direct access is scarcely reported, a long-standing problem, and developing a unique yet simple method can pave the pathway to an entirely different retrosynthetic route for the total synthesis of these alkaloids. Herein, this problem is addressed by developing an unprecedented branch-selective allylation strategy employing a broad range of structurally and electronically different 3-alkenyl-indoles and allylboronic acids.

View Article and Find Full Text PDF

While there has been a proliferation of training and practice paradigms in the realm of noncoronary interventions, coronary disease remains the predominant pathology necessitating interventional cardiology expertise. The landscape of coronary disease has also experienced a significant transformation due to rapidly evolving technologies, clinical application of mechanical circulatory support and other device innovations, and increasing acuity and complexity of patients. The modern interventional cardiologist is subject to challenges including decreasing coronary procedural volume, need to maintain clinical and financial productivity, and often also requirements of continued scholastic pursuit.

View Article and Find Full Text PDF

Copper-Catalyzed Asymmetric Nucleophilic Opening of 1,1,2,2-Tetrasubstituted Donor-Acceptor Cyclopropanes for the Synthesis of α-Tertiary Amines.

J Am Chem Soc

December 2024

State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China.

Catalytic asymmetric transformation of donor-acceptor cyclopropanes (DACs) has been proven to be a highly valuable and robust strategy to construct diverse types of enantioenriched molecules. However, the use of 1,1,2,2-tetrasubstituted DACs to form products bearing quaternary stereocenters remains a long-term unsolved challenge. Here, we report the copper-catalyzed asymmetric aminative ring opening of tetrasubstituted alkynyl DACs that delivers a myriad of α-tertiary amines with high levels of enantioselectivities.

View Article and Find Full Text PDF

Developing dual-responsive quinolinium prodrugs of 8-hydroxyquinoline by harnessing the dual chelating sites.

Eur J Med Chem

December 2024

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China; Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi, 214122, China. Electronic address:

The bidentate metal ion chelator 8-hydroxyquinoline (8-HQ) demonstrates significant potential in anticancer therapy but is hindered by adverse effects due to nonspecific chelation in normal tissues. The phenolic hydroxyl oxygen of 8-HQ has been extensively exploited to develop O-masked 8-HQ prodrugs aimed at achieving on-demand chelation. However, the equally crucial quinoline nitrogen for chelation remains underutilized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!