Using Theory to Reconcile Experiment: The Structural and Thermodynamic Basis of Ligand Recognition by Phenylethanolamine N-Methyltransferase (PNMT).

J Chem Theory Comput

School of Chemistry and Molecular Biosciences (SCMB) and ‡Institute for Molecular Bioscience (IMB), The University of Queensland (UQ), St. Lucia Campus, Brisbane, QLD 4072 Australia.

Published: May 2011

A fundamental challenge in computational drug design is the availability of reliable and validated experimental binding and structural data against which theoretical calculations can be compared. In this work a combination of molecular dynamics (MD) simulations and free energy calculations has been used to analyze the structural and thermodynamic basis of ligand recognition by phenylethanolamine N-methyltransferase (PNMT) in an attempt to resolve uncertainties in the available binding and structural data. PNMT catalyzes the conversion of norepinephrine into epinephrine (adrenaline), and inhibitors of PNMT are of potential therapeutic importance in Alzheimer's and Parkinson's disease. Excellent agreement between the calculated and recently revised relative binding free energies to human PNMT was obtained with the average deviation between the calculated and the experimentally determined values being only 0.8 kJ/mol. In this case, the variation in the experimental data over time is much greater than the uncertainties in the theoretical estimates. The calculations have also enabled the refinement of structure-activity relationships in this system, to understand the basis of enantiomeric selectivity of substitution at position three of tetrahydroisoquinoline and to identify the role of specific structural waters. Finally, the calculations suggest that the preferred binding mode of trans-(1S,2S)-2-amino-1-tetralol is similar to that of its epimer cis-(1R,2S)-2-amino-1-tetralol and that the ligand does not adopt the novel binding mode proposed in the pdb entry 2AN5 . The work demonstrates how MD simulations and free energy calculations can be used to resolve uncertainties in experimental binding affinities, binding modes, and other aspects related to X-ray refinement and computational drug design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct1007229DOI Listing

Publication Analysis

Top Keywords

structural thermodynamic
8
thermodynamic basis
8
basis ligand
8
ligand recognition
8
recognition phenylethanolamine
8
phenylethanolamine n-methyltransferase
8
n-methyltransferase pnmt
8
computational drug
8
drug design
8
experimental binding
8

Similar Publications

Context: This study investigates the reaction mechanism of luteolin with selenium dioxide in ethanol. Through a detailed search for transition states and thermodynamic energy calculations, it was found that the reaction proceeds via two possible pathways, leading to the formation of products P1 and P2, respectively. A common feature of both pathways is that the first elementary step results in the formation of the intermediate INT1.

View Article and Find Full Text PDF

G-quadruplex structures in 16S rRNA regions correlate with thermal adaptation in prokaryotes.

Nucleic Acids Res

January 2025

Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, United States.

G-quadruplex (G4) structure is a nucleic acid secondary structure formed by guanine-rich sequences, playing essential roles in various biological processes such as gene regulation and environmental stress adaptation. Although prokaryotes growing at high temperatures have higher GC contents, the pattern of G4 structure associated with GC content variation in thermal adaptation remains elusive. This study analyzed 681 bacterial genomes to explore the role of G4 structures in thermal adaptation.

View Article and Find Full Text PDF

The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.

View Article and Find Full Text PDF

Time-resolved Brownian tomography of single nanocrystals in liquid during oxidative etching.

Nat Commun

January 2025

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.

Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution.

View Article and Find Full Text PDF

Near-infrared wavelength-selective soft actuators have attracted much attention for applications in microsystems in bioliving. It is desirable for the photothermal conversion materials in the actuators to be downsized to the molecular scale. However, in conventional actuator materials using copolymer gels composed of thermosensitive and photothermal conversion molecule-coordinated monomers, the strong cross-linking of molecules in the networks impairs the actuator deformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!