Composition-dependent solvation dynamics around the probe coumarin 153 (C153) have been explored in CO2-expanded methanol and acetone with molecular dynamics (MD) simulations. Solvent response functions are biexponential with two distinct decay time scales: a rapid initial decay (∼0.1 ps) and a long relaxation process. Solvation times in both expanded solvent classes are nearly constant at partition compositions up to 80% CO2. The extent of solvation beyond this composition has the greatest tunability and sensitivity to bulk solvent composition. Solvent rotational correlation functions (RCFs) have also been used to explore rotational relaxation. Rotations have a larger range of time scales and are dependent on a number of factors including bulk composition, solvent-solvent interactions, particularly hydrogen bonding, and proximity to C153. The establishment of the solvation structure around a solute in a GXL is clearly a complex process. With respect to the local solvent domain around C153, it was seen to be primarily affected by a nonlinear combination of the rotational and diffusive transport dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct800353s | DOI Listing |
Viruses
December 2024
Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, C.P. 30100 Murcia, Spain.
Mixed infections of plant viruses are common in crops and represent a critical biotic factor with substantial epidemiological implications for plant viral diseases. Compared to single-virus infections, mixed infections arise from simultaneous or sequential infections, which can inevitably affect the ecology and evolution of the diseases. These infections can either exacerbate or ameliorate symptom severity, including virus-virus interactions within the same host that may influence a range of viral traits associated with disease emergence.
View Article and Find Full Text PDFViruses
December 2024
State Public Health Laboratory, Zapopan 45170, Jalisco, Mexico.
The coronavirus disease 2019 (COVID-19) pandemic profoundly disrupted the epidemiology of respiratory viruses, driven primarily by widespread non-pharmaceutical interventions (NPIs) such as social distancing and masking. This eight-year retrospective study examines the seasonal patterns and incidence of influenza virus, respiratory syncytial virus (RSV), and other respiratory viruses across pre-pandemic, pandemic, and post-pandemic phases in Jalisco, Mexico. Weekly case counts were analyzed using an interrupted time series (ITS) model, segmenting the timeline into these three distinct phases.
View Article and Find Full Text PDFViruses
December 2024
Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina.
Understanding the evolutionary patterns and geographic spread of SARS-CoV-2 variants, particularly Omicron, is essential for effective public health responses. This study focused on the genomic analysis of the Omicron variant in Cordoba, Argentina from 2021 to 2022. Phylogenetic analysis revealed the dominant presence of BA.
View Article and Find Full Text PDFViruses
November 2024
State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host.
View Article and Find Full Text PDFViruses
November 2024
Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, 00128 Rome, Italy.
Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional chemical-based interventions. With the growing impact of climate change on mosquito population dynamics and disease transmission, Wolbachia interventions represent an adaptable and resilient strategy for mitigating the public health burden of vector-borne diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!