Monometallic Ni(II) and Co(II) complexes with large magnetic anisotropy are studied using correlated wave function based ab initio calculations. Based on the effective Hamiltonian theory, we propose a scheme to extract both the parameters of the zero-field splitting (ZFS) tensor and the magnetic anisotropy axes. Contrarily to the usual theoretical procedure of extraction, the method presented here determines the sign and the magnitude of the ZFS parameters in any circumstances. While the energy levels provide enough information to extract the ZFS parameters in Ni(II) complexes, additional information contained in the wave functions must be used to extract the ZFS parameters of Co(II) complexes. The effective Hamiltonian procedure also enables us to confirm the validity of the standard model Hamiltonian to produce the magnetic anisotropy of monometallic complexes. The calculated ZFS parameters are in good agreement with high-field, high-frequency electron paramagnetic resonance spectroscopy and frequency domain magnetic resonance spectroscopy data. A methodological analysis of the results shows that the ligand-to-metal charge transfer configurations must be introduced in the reference space to obtain quantitative agreement with the experimental estimates of the ZFS parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct900326e | DOI Listing |
J Phys Chem A
December 2024
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russian Federation.
In this study, low-temperature EPR spectroscopy and quantum-chemical techniques were employed to investigate multispin systems─1,5-diphenyl-3-(3-nitrenophenyl)-6-oxoverdazyl and 1,5-diphenyl-3-(4-nitrenophenyl)-6-oxoverdazyl─that contain a nitrene center at either a - or -position, respectively. Ground states and magnetic zero-field splitting (ZFS) parameters of these multispin systems were determined by experimental and computational methods. The results indicated that the high-spin quartet state is a ground state, and the quartet-doublet energy gap is close to 10 kcal/mol for the -position of the nitrene group, with ZFS parameters = 0.
View Article and Find Full Text PDFChemistry
November 2024
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.
We prepared a series fully rigid spiro electron donor-acceptor orthogonal dyads, with closed form of rhodamine (Rho) as electron donor and naphthalene (Np)/anthraquinone (AQ) as electron acceptor, to access the long-lived triplet charge separation (CS) state, via the electron spin control method. We found strong dependency of the photophysical property of the dyads on the amino substitution positions of the Np chromophores in the dyads 1,8-DaNp-Rho and 2,3-DaNp-Rho. Nanosecond transient absorption (ns-TA) spectra show the population of the LE state (lifetime: 47 μs) for 2,3-DaNp-Rho, however, long-lived CS state was observed (τ=0.
View Article and Find Full Text PDFACS Nano
October 2024
Materials Department, University of California, Santa Barbara, California 93106-5050, United States.
J Phys Chem A
October 2024
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
Exploring the electronic structure and dynamic behavior of Mn(II) complexes reveals fascinating magnetic properties and prospective biomedical applications. In this study, we investigate the solvent phase dynamics of heptacoordinated Mn(II) complexes through ab initio molecular dynamics simulations and density functional theory (DFT) calculations with effectively varying temperatures. We observed that the complex with high stability ([Mn(pmpa)(HO)]) remains relatively rigid as the temperature increases to 90 °C, with only a minor change in its radial distribution functions (RDFs), compared to the RDF peaks at 25 °C.
View Article and Find Full Text PDFChemistry
October 2024
Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany.
New cobalt(II)-based complexes with [NO] coordination formed by two bis-chelate ligands were synthesized and characterized by a multi-technique approach. The complexes possess an easy-axis anisotropy (D<0) and magnetic measurements show a field-induced slow relaxation of magnetization. The spin-reversal barriers, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!