Hypothesis: Macrocyclic amphiphiles form interesting self-assembling structures, including solid lipid nanoparticles, which have potential applications in drug encapsulation. Aryl-extended calixpyrroles, which act as anion binding hosts, are expected to form solid lipid nanoparticles, even though the alkyl chains have unusual perpendicular geometry with respect to the hydrophilic head group. The preparation conditions and the alkyl chain length should affect the size and stability of the particles.
Experiments: Solid lipid nanoparticles of two aryl-extended calixpyrroles with resorcinol walls and either meso-dodecyl or meso-methyl alkyl chains were compared. Ethanolic solutions of the calixpyrroles were mixed with water and the resulting nanoparticle dispersions were studied with dynamic light scattering and nanoparticle tracking analysis. The effect of different calixpyrrole/ethanol/water ratios on particle size was tested. The surface charge of the particles at different pH and NaCl concentration was determined by zeta potential measurements.
Findings: The meso-dodecyl calixpyrrole produced small nanoparticles with mean hydrodynamic diameters between 40 and 70nm in 0.86-4.28M ethanol. The particles were stable in solution for several months. Particles prepared from meso-methyl calixpyrrole were larger and less stable. The smallest particles were obtained with low calixpyrrole concentration and calixpyrrole/ethanol ratio. Larger ethanol/water ratio induced broader particle size distributions. Increasing pH aided the stability of the particles due to increased negative surface charge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2015.11.012 | DOI Listing |
Anal Chim Acta
February 2025
Department of Chemistry, University of Waterloo, Waterloo, ON, Canada. Electronic address:
Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.
The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
Nanosuspensions (NS), with their submicron particle sizes and unique physicochemical properties, provide a versatile solution for enhancing the administration of medications that are not highly soluble in water or lipids. This review highlights recent advancements, future prospects, and challenges in NS-based drug delivery, particularly for oral, ocular, transdermal, pulmonary, and parenteral routes. The conversion of oral NS into powders, pellets, granules, tablets, and capsules, and their incorporation into film dosage forms to address stability concerns is thoroughly reviewed.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA.
Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!