The high polarizability of halide anions affects, in aqueous solutions, many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. In this Letter dipolar interactions of halides in water are investigated through Car-Parrinello Molecular Dynamics simulations. Contrary to previous studies, a different polarization of first and second hydration shell water molecules is found. The analysis hints that existing classical polarizable force fields lack a description of short-range interactions which causes an overestimation of polarization effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct900096n | DOI Listing |
Mikrochim Acta
December 2024
Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Colleges Universities Key Laboratory of Optic-Electric Chemo/Biosensing and Molecular Recognition, Guangxi Minzu University, Nanning, 530006, China.
A dual supersaturation recrystallization method was employed to synthesize water-stable, highly sensitive cesium-lead halide perovskite nanocrystals (CsPbBr PNCs). The PNCs exhibited excellent water stability, a significant photoluminescence quantum efficiency of 83.03%, along with a narrow full width at half maximum (FWHM) of 20 nm.
View Article and Find Full Text PDFOrg Biomol Chem
December 2024
Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia.
Efficient catalytic systems for various organic transformations in green solvents, especially water, are in great demand. Catalytically active bis-NHC complexes of palladium(II) based on imidazole-4,5-dicarboxylic acid with different lipophilicities were obtained. The synthesis of imidazolium salts was complicated by the formation of side products of nucleophilic substitution by iodide ions in the Menshutkin reaction involving alkyl iodides, which was successfully resolved by using alkyl tosylates.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong, PR China.
The kinetics of polyamide membrane degradation by free chlorine and halide ions (Br and Cl) were innovatively evaluated based on physicochemical properties and filtration performance, using water/solute permeability coefficient in addition to bromide incorporation as important indicators. The reaction rate constants for the reduced water and HBO permeability coefficient were 1-2 orders of magnitude higher at 0-1 h than 1-10 h. N-bromination and bromination-promoted hydrolysis are dominant degradation mechanisms at 0-1 h (reflected by the breakage of hydrogen bond, the increased Ca binding content, and the increased charge density), and ring-bromination further occurs at 1-10 h (reflected by the disappearance or weakening of aromatic amide band and the nearly constant hydrogen bond).
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Solar-driven hydrogen generation is one of the promising technologies developed to address the world's growing energy demand in an sustainable way. While, for hydrogen generation (otherwise water splitting), photocatalytic, photoelectrochemical, and PV-integrated water splitting systems employing conventional semiconductor oxides materials and their electrodes have been under investigation for over a decade, lead (Pb)- halide perovskites (HPs) made their debut in 2016. Since then, the exceptional characteristics of these materials, such as their tunable optoelectronic properties, ease of processing, high absorption coefficients, and long diffusion lengths, have positioned them as a highly promising material for solar-driven water splitting.
View Article and Find Full Text PDFLangmuir
December 2024
ACA Berlin, Max-Planck-Str. 5, D-12489 Berlin, Germany.
This communication represents the chemical alternative to the previous two papers dealing with the influence of positively charged alkali cations on the adsorption properties of the series of the standard surfactant system of alkali-perfluorocarbon octanoates. Now, this contribution describes the adsorption properties of the negatively charged cationic surfactant series of trimethyldodecyl-ammonium halides. In our latest contributions, we have put forward a new model of adsorption of ionic surfactants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!