We have studied the dynamics and thermodynamics of two of the four evolutionarily conserved segments from the p53 DNA binding domain, using molecular dynamics and replica exchange simulations. These two regions contain well-defined elements of secondary structure (a β hairpin for region II and an α helix for region V) and bind to DNA in the intact protein. They are also mutational hot spots. The goal of our study was to determine the stability and folding propensity of these peptides in isolation. We used three force fields and solvent models (CHARMM19 with EEF1, CHARMM27 with GBMV, GROMOS96 with SPC). The predicted stability, folding propensity, and secondary structures depend upon the potential. Secondary structure predictors identify helical propensity for region II, in agreement with one of the force fields (CHARMM/GBMV). However, the other two potentials favor β structure for this peptide, although the conformations may differ from the crystal. For region V secondary structure predictions are unclear. Only one force field (CHARMM/GBMV) produces low-lying free energy minima that retain some of the α helical structure from the crystal structure. The other two potentials appear to favor β structure for this peptide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct8005387 | DOI Listing |
Sci Transl Med
January 2025
Graduate Program in Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue (M-860), Miami, FL 33136, USA.
Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally).
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.
Marine resources are attractive for screening new useful bacteria. From a marine sediment sample, we performed isolation and screening of bacterial strains in search of new bioactive compounds. HPLC and ESI-MS analysis indicated that the new bacterium, Lysinibacillus sp.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Department of Mathematics, The University of Manchester, Manchester, UK.
The reproduction number, the mean number of secondary cases infected by each primary case, gives an indication of the effort required to control the disease. Beyond the well-known reproduction number, there are two natural extensions, namely the and reproduction numbers. As behaviour, population immunity and viral characteristics can change with time, these reproduction numbers can vary over time.
View Article and Find Full Text PDFChemSusChem
January 2025
Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering, No. 68 Wenchang Road, 121 Street, 650093, Kunming, CHINA.
Efficient recovery of metals from secondary resources is essential to address resource shortages and environmental crises. The development of a cheap, environmentally friendly, and highly efficient recovery pathway is essential for resource retrieval. In this study, we propose a high-efficiency extraction approach utilizing bis(2,4,4-trimethylpentyl) phosphonic acid (Cyanex272) to recover cobalt from waste choline chloride/ethylene glycol (Ethaline) electrolyte containing Co(II) ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!