Cartilage Derived Morphogenetic Protein-2 Induces Cell Migration and Its Chondrogenic Potential in C28/I2 Cells.

Int J Spine Surg

Department of Orthopaedic Research, Orthopaedic Research Institute, St George Hospital Clinical School, University of New South Wales, Sydney, Australia.

Published: November 2015

Background: Intervertebral disc degeneration is a major cause of low back pain. Previous researches have demonstrated local administration of signalling molecules as potential biological therapies for disc regeneration. Our laboratory has published encouraging results for effectiveness of injection of the cartilage derived morphogenetic protein-2 (CDMP-2) into ovine discs following annular injury. To elucidate the mechanisms underpinning these in vivo effects, this project aimed to investigate the potential of CDMP-2 on cellular migration, proliferation and extracellular matrix production in a human chondrocytic cell line.

Methods: To evaluate cell motility, cells were seeded into Boyden chambers and CDMP-2 as a chemo-attractant or a stimulant was placed into either the bottom or top chambers respectively. Cells that had completed migration through the porous membrane were visualized by immunocytochemical staining and analysed using Image J. The effect of CDMP-2 on cell proliferation, proteoglycan and collagen production, as well as chondrogenic gene expression in human chondrocytic cell line C28/I2 was also examined.

Results: The results revealed that cells migrated significantly under the influence of CDMP-2 (200 ng/ml) stimulation compared to control (3-fold increase, p = 0.033) and demonstrated a significant chemotactic movement towards a solution of 200ng/ml CDMP-2 (>2-fold increase, p = 0.027). A 35% increase in C28/I2 proliferation was observed after CDMP-2 stimulation (p < 0.0001) compared to control, and in the presence of 100ng/ml CDMP-2, proteoglycan synthesis had an 8-fold increase (p = 0.048). Similarly, gene expression analysis demonstrated increased expression of aggrecan, collagen types II, X and XXVII, BMPR-1A and BMPR-2 when cells were treated with CDMP-2.

Conclusion: The study shows that C28/I2 cells can migrate under the influence of CDMP-2 as a chemoattractant or migration stimulator, suggestive of an effect on chondrocytic cells in the intervertebral disc. Further, CDMP-2 can stimulate C28/I2 cells to proliferate and synthesize key extracellular matrix proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657611PMC
http://dx.doi.org/10.14444/2052DOI Listing

Publication Analysis

Top Keywords

c28/i2 cells
12
cdmp-2
10
cartilage derived
8
derived morphogenetic
8
morphogenetic protein-2
8
cells
8
intervertebral disc
8
extracellular matrix
8
human chondrocytic
8
chondrocytic cell
8

Similar Publications

Osteoarthritis (OA) is the primary cause of disability worldwide. Chondrocyte apoptosis has important implications for OA onset and progression. This work was designed to explore the mechanisms of chondrocyte apoptosis in OA and identify key chondrocyte apoptosis-related genes (CARGs).

View Article and Find Full Text PDF

Background: Undernutrition impairs linear growth while restoration of nutritional provisions leads to accelerated growth patterns. However, the composition of the nutrition provided is key to facilitating effective catch-up growth without compromising bone quantity, quality, and long-term health.

Methods: We evaluated the role of a whey protein concentrate enriched in bovine milk exosomes (BMEs) in modulating the proliferative properties of human chondrocytes in vitro and studied how these effects might impact bone quantity and quality measured as longitudinal tibia growth, bone mineral content (BMC) and density (BMD), and trabecular micro-CT parameters in stunted rats during catch-up growth.

View Article and Find Full Text PDF

Inhibition of CRLF1 expression by miR-8485 alleviates IL-1β-induced chondrocyte inflammation, apoptosis, and extracellular matrix degradation.

Int Immunopharmacol

January 2025

Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. Electronic address:

The aim of this study was to investigate the impact of differentially expressed miR-8485 on chondrocyte inflammation in osteoarthritis (OA) and its underlying pathological mechanisms. MiR-8485, which was downregulated in OA, was identified by microarray analysis, and was also found to be decreased in IL-1β-induced C28/I2 cells. miR-8485 down-regulation or IL-1β treated of C28/I2 cells induces a decrease in cellular activity, an increase in apoptosis, an elevation in Cleaved caspase-3, MMP13, and ADAMTS5 protein levels, a decrease in Collagen II and Aggrecan levels, and an increase in the levels of pro-inflammatory factors TNF-α and IL-6.

View Article and Find Full Text PDF

Calcium Fructoborate Improves Knee Osteoarthritis in Rats by Activating Hedgehog Signaling Through DDIT3.

Biol Trace Elem Res

November 2024

Department of Sports Medicine, Yantaishan Hospital, 10087 Science and Technology Avenue, Laishan Distirct, Yantai, 264003, Shandong, China.

The mechanism of CFB in treating knee osteoarthritis is not yet clear and deserves further discussion. The C28/I2 cell was stimulated by TNF-α and the MIA-induced OA rat model were constructed, and then treated with a certain concentration of CFB. The effects of CFB on chondrocyte apoptosis, inflammatory response, and collagen matrix degradation were assessed.

View Article and Find Full Text PDF

Osteoarthritis (OA), a disease of articular joints, is the leading cause of disability in the elderly. Repressing ferroptosis and improving mitochondrial function can delay the progression of OA. Kruppel-like factor 2 (KLF2) exerts a protective effect on OA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!