Transglutaminase 2 in cancer.

Am J Cancer Res

Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University Guangzhou, China ; Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University Guangzhou, China.

Published: November 2015

The significant influence of tumor microenvironment on malignant cells has been investigated with enthusiasm in this era of targeted therapy. Transglutaminase 2 (TG2, EC 2.3.2.13), a multi-functional enzyme that catalyzes the formation of intermolecular isopeptide bonds between glutamine and lysine side-chains, has been reported to exert important pathophysiological functions. The aim of this review was to investigate the correlation between TG2 and malignant behaviors, which could provide the rationale for novel approaches in anti-cancer therapy. We performed a systematic and electronic search on Medline, Scopus, and Web of Science for relevant publications from inception to April 2015. The bibliographic references of retrieved articles were further reviewed for additional relevant studies. TG2 exerts important physiological functions and plays vital roles in inflammation mainly through its modulation on the structure and stability of extracellular matrix (ECM). It also regulates EMT of diverse malignant cells through various intracellular and extracellular pathways. TG2 also plays an important role in tumor progression and may serve as a novel prognostic biomarker and therapeutic target in various cancer types. TG2 promotes malignant cell mobility, invasion, and metastasis, and induces chemo-resistance of cancer cells, mainly through its pro-crosslink and signaling transduction mediation propensities. In conclusion, TG2 plays vital roles in malignancy progression, and may have important prognostic and therapeutic significances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633903PMC

Publication Analysis

Top Keywords

malignant cells
8
plays vital
8
vital roles
8
tg2 plays
8
tg2
6
transglutaminase cancer
4
cancer influence
4
influence tumor
4
tumor microenvironment
4
malignant
4

Similar Publications

The ribophorin family, including RPN1, has been associated with tumor progression, but its specific role in pan-cancer dynamics remains unclear. Using data from TCGA, GTEx, and Ualcan databases, we investigated the relationship of RPN1 with prognosis, genomic alterations, and epigenetic modifications across various cancers. Differential analysis revealed elevated RPN1 expression in multiple cancer types, indicating a potential prognostic value.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most common malignant tumors among women, accounting for 24.5% of all cancer cases and leading to 15.5% of cancer-related mortality.

View Article and Find Full Text PDF

Introduction: Osteosarcoma, a highly aggressive bone cancer primarily affecting children and young adults, remains a significant challenge in clinical oncology. Metastasis stands as the primary cause of mortality in osteosarcoma patients. However, the mechanisms driving this process remain incompletely understood.

View Article and Find Full Text PDF

Bruton tyrosine kinase covalent inhibition shapes the immune microenvironment in chronic lymphocytic leukemia.

Haematologica

March 2025

Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra.

Continuous treatment with ibrutinib not only exerts tumor control but also enhances T cell function in patients with chronic lymphocytic leukemia (CLL). We conducted longitudinal multi-omics analyses in samples from CLL patients receiving ibrutinib upfront to identify potential adaptive mechanisms to Bruton tyrosine kinase (BTK) inhibition during the first 12 months of continuous therapy. We found that ibrutinib induced a decrease in the expression of exhaustion markers and the proportion of Tregs and Tfh cells normalized to levels observed in healthy donors.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly malignant tumor in women, characterized by high morbidity, mortality, and recurrence rates. Although surgical treatment, radiotherapy, and chemotherapy are the mainstays of current treatment methods, the high heterogeneity of TNBC results in unsatisfactory outcomes with low 5-year survival rates. Rapid advancements in omics technology have propelled the understanding of TNBC molecular biology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!