A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Granulocyte colony-stimulating factor exacerbates hematopoietic stem cell injury after irradiation. | LitMetric

Granulocyte colony-stimulating factor exacerbates hematopoietic stem cell injury after irradiation.

Cell Biosci

Institute of Laboratory Animal Science, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China ; Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China ; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China.

Published: November 2015

Background: Exposure to a moderate to high dose of ionizing radiation (IR) not only causes acute radiation syndrome but also induces long-term (LT) bone marrow (BM) injury. The latter effect of IR is primarily attributed to the induction of hematopoietic stem cell (HSC) senescence. Granulocyte colony-stimulating factor (G-CSF) is the only treatment recommended to be given to radiation victims soon after IR. However, clinical studies have shown that G-CSF used to treat the leukopenia induced by radiotherapy or chemotherapy in patients can cause sustained low white blood cell counts in peripheral blood. It has been suggested that this adverse effect is caused by HSC and hematopoietic progenitor cell (HPC) proliferation and differentiation stimulated by G-CSF, which impairs HSC self-renewal and may exhaust the BM capacity to exacerbate IR-induced LT-BM injury.

Methods: C57BL/6 mice were exposed to 4 Gy γ-rays of total body irradiation (TBI) at a dose-rate of 1.08 Gy per minute, and the mice were treated with G-CSF (1 μg/each by ip) or vehicle at 2 and 6 h after TBI on the first day and then twice every day for 6 days. All mice were killed one month after TBI for analysis of peripheral blood cell counts, bone marrow cellularity and long-term HSC (CD34-lineage-sca1+c-kit+) frequency. The colony-forming unit-granulocyte and macrophage (CFU-GM) ability of HPC was measured by colony-forming cell (CFC) assay, and the HSC self-renewal capacity was analyzed by BM transplantation. The levels of ROS production, the expression of phospho-p38 mitogen-activated protein kinase (p-p38) and p16(INK4a) (p16) mRNA in HSCs were measured by flow cytometry and RT-PCR, respectively.

Results: The results of our studies show that G-CSF administration mitigated TBI-induced decreases in WBC and the suppression of HPC function (CFU-GM) (p < 0.05), whereas G-CSF exacerbated the suppression of long-term HSC engraftment after transplantation one month after TBI (p < 0.05); The increase in HSC damage was associated with increased ROS production, activation of p38 mitogen-activated protein kinase (p38), induction of senescence in HSCs.

Conclusion: Our findings suggest that although G-CSF administration can reduce ARS, it can also exacerbate TBI-induced LT-BM injury in part by promoting HSC senescence via the ROS-p38-p16 pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659162PMC
http://dx.doi.org/10.1186/s13578-015-0057-3DOI Listing

Publication Analysis

Top Keywords

granulocyte colony-stimulating
8
colony-stimulating factor
8
hematopoietic stem
8
stem cell
8
bone marrow
8
studies g-csf
8
blood cell
8
cell counts
8
peripheral blood
8
hsc self-renewal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!