Mitochondrial dysfunction causes increased oxidative stress and depletion of ATP, which are involved in the etiology of a variety of renal diseases, such as CKD, AKI, and steroid-resistant nephrotic syndrome. Antioxidant therapies are being investigated, but clinical outcomes have yet to be determined. Recently, we reported that a newly synthesized indole derivative, mitochonic acid 5 (MA-5), increases cellular ATP level and survival of fibroblasts from patients with mitochondrial disease. MA-5 modulates mitochondrial ATP synthesis independently of oxidative phosphorylation and the electron transport chain. Here, we further investigated the mechanism of action for MA-5. Administration of MA-5 to an ischemia-reperfusion injury model and a cisplatin-induced nephropathy model improved renal function. In in vitro bioenergetic studies, MA-5 facilitated ATP production and reduced the level of mitochondrial reactive oxygen species (ROS) without affecting activity of mitochondrial complexes I-IV. Additional assays revealed that MA-5 targets the mitochondrial protein mitofilin at the crista junction of the inner membrane. In Hep3B cells, overexpression of mitofilin increased the basal ATP level, and treatment with MA-5 amplified this effect. In a unique mitochondrial disease model (Mitomice with mitochondrial DNA deletion that mimics typical human mitochondrial disease phenotype), MA-5 improved the reduced cardiac and renal mitochondrial respiration and seemed to prolong survival, although statistical analysis of survival times could not be conducted. These results suggest that MA-5 functions in a manner differing from that of antioxidant therapy and could be a novel therapeutic drug for the treatment of cardiac and renal diseases associated with mitochondrial dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926982 | PMC |
http://dx.doi.org/10.1681/ASN.2015060623 | DOI Listing |
Doc Ophthalmol
December 2024
Save Sight Institute Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
Purpose: Multiple mitochondrial syndromes, such as Kearns-Sayre, involve the concurrence of diabetes mellitus and inherited pigmentary retinopathy. It is rare, however, for proliferative disease to develop in these patients as existing inner retinal dysfunction is thought to be protective.
Methods: To our knowledge this is the first description of proliferative diabetic retinopathy (PDR) in Kearns-Sayre syndrome.
Biogerontology
December 2024
Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
Our group has synthesized a pleiotropic synthetic nanozyme redox mediator we term a "pleozyme" that displays multiple enzymatic characteristics, including acting as a superoxide dismutase mimetic, oxidizing NADH to NAD, and oxidizing HS to polysulfides and thiosulfate. Benefits have been seen in acute and chronic neurological disease models. The molecule is sourced from coconut-derived activated charcoal that has undergone harsh oxidization with fuming nitric acid, which alters the structure and chemical characteristics, yielding 3-8 nm discs with broad redox potential.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA.
Uric acid (UA), a metabolite of purine and fructose metabolism, is linked to inflammation and metabolic disorders, including gout and cardiovascular disease. Its pro-inflammatory effects are largely driven by the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, leading to increased cytokine production. Beta-hydroxybutyrate (BHB), a ketone produced during fasting or carbohydrate restriction, has been shown to reduce inflammation.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India.
Objective: The poultry industry is significantly impacted by viral infections, particularly Newcastle Disease Virus (NDV), which leads to substantial economic losses. It is essential to comprehend how the sequence of development affects biological pathways and how early exposure to infections might affect immune responses.
Methods: This study employed transcriptome analysis to investigate host-pathogen interactions by analyzing gene expression changes in NDV-infected chicken embryos' lungs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!