Mannose-binding lectin polymorphisms and rheumatoid arthritis: A short review and meta-analysis.

Mol Immunol

Laboratory of Molecular Immunopatology-Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro, 181, Alto da Glória, Curitiba, PR, Brazil. Electronic address:

Published: January 2016

Mannose-binding lectin (MBL) is a pattern recognition receptor of the lectin pathway of complement system. MBL binds to carbohydrates on microorganism's surfaces leading to complement activation, opsonization and phagocytosis. Polymorphisms in the MBL gene (MBL2) are associated with variations on MBL serum levels and with the susceptibility to various infectious and autoimmune diseases. The involvement of the lectin pathway in rheumatoid arthritis (RA) has been demonstrated by several studies and although MBL has been considered to have a dual role in the pathogenesis of the disease, the association between MBL and RA remains inconclusive. In an attempt to clarify this relationship, we developed this short review summarizing accumulated evidences in regard to MBL and RA and a meta-analysis to evaluate the influence of MBL2 polymorphisms on the susceptibility to RA. Among a total of 217 articles that were identified following a predefined search strategy on PubMed, Scopus, Scielo, EMBASE and Cochrane databases, only 13 met all inclusion criteria and were included in the meta-analysis. Data assessment was conducted by three independent investigators and presented in odds ratio (OR) and 95% confidence intervals (CIs) using forest plot charts. Both heterogeneity and publication bias were analyzed. The results of the meta-analysis evidenced that MBL2 low producing OO and XX genotypes do not confer higher risk to RA, even when data were analyzed according to cohort's ethnicity. Further studies are needed in order to clarify the importance of other genes of the lectin pathway in the pathogenesis of RA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2015.10.010DOI Listing

Publication Analysis

Top Keywords

lectin pathway
12
mannose-binding lectin
8
rheumatoid arthritis
8
short review
8
mbl
7
lectin polymorphisms
4
polymorphisms rheumatoid
4
arthritis short
4
meta-analysis
4
review meta-analysis
4

Similar Publications

Omentin-1 mitigates non-alcoholic fatty liver disease by preserving autophagy through AMPKα/mTOR signaling pathway.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.

Adipose tissue-derived adipokines facilitate inter-organ communication between adipose tissue and other organs. Omentin-1, an adipokine, has been implicated in the regulation of glucose and insulin metabolism. However, limited knowledge exists regarding the regulatory impact of endogenous omentin-1 on hepatic steatosis.

View Article and Find Full Text PDF

Shedding light on the role of complement C4 activation in cancer.

Hum Immunol

December 2024

Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA. Electronic address:

Complement C4 is a key component in the activation of classical and lectin complement pathways, which are observed in both animal tumor models and cancer patients. While its role in autoimmune disorders has been extensively studied, the functions of complement C4 and its activation in cancer have received inadequate consideration. Recent studies have detected C4 activation in animal tumor models and cancer patients, with its fragment C4d found in cancer tissues and lymph nodes.

View Article and Find Full Text PDF

Periodic mesoporous organicsilica-loaded mincle agonists enhance the immunogenicity of COVID-19 subunit vaccines by dual activation of B cells and dendritic cells.

Acta Biomater

December 2024

National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

Effective vaccination is crucial for intervening in the COVID-19 pandemic. However, with the continuous mutation of the SARS-CoV-2, existing vaccines including subunit vaccines cannot effectively prevent virus infections. Hence, there is an urgent need to enhance the immunogenicity of existing vaccines to induce a more potent and durable immune response.

View Article and Find Full Text PDF

The intricate combination of organic and inorganic compounds found in snake venom includes proteins, peptides, lipids, carbohydrates, nucleotides, and metal ions. These components work together to immobilise and consume prey through processes such as paralysis and hypotension. Proteins, both enzymatic and non-enzymatic, form the primary components of the venom.

View Article and Find Full Text PDF

Glycosylation is a ubiquitous and the most structurally diverse post-translational modification of proteins. High levels of phenotypic heterogeneity in brain tumors affect the biosynthetic pathway of glycosylation machinery, resulting in aberrant glycosylation patterns. Traditionally, unique glycocode readers, carbohydrate-binding proteins, have been used to identify differentially expressed carbohydrate determinants associated with the tumor cell surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!