Nanoscale measurements of unoccupied band dispersion in few-layer graphene.

Nat Commun

Huygens-Kamerlingh Onnes Laboratorium, Leiden Institute of Physics, Leiden University, PO Box 9504, Leiden NL-2300 RA, Netherlands.

Published: November 2015

The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674768PMC
http://dx.doi.org/10.1038/ncomms9926DOI Listing

Publication Analysis

Top Keywords

measurements unoccupied
8
band structure
8
nanoscale measurements
4
band
4
unoccupied band
4
band dispersion
4
dispersion few-layer
4
few-layer graphene
4
graphene properties
4
properties material
4

Similar Publications

Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique, yet it faces challenges with certain probe molecules exhibiting weak or inactive signals, limiting their applicability. In a recent study, we investigated this phenomenon using a set of four probe molecules─chloramphenicol (CAP), 4-nitrophenol (4-NP), amoxicillin (AMX), and furazolidone (FZD)─deposited on Ag-based nanostructured SERS substrates. Despite being measured under identical conditions, CAP and 4-NP exhibited SERS activity, while AMX and FZD did not.

View Article and Find Full Text PDF

Native and non-native winter foraging resources do not explain winter roost occupancy in Queensland, Australia.

Front Ecol Evol

October 2024

Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, United States.

Anthropogenic land use change concurrent with introductions of non-native species alters the abundance and distribution of foraging resources for wildlife. This is particularly concerning when resource bottlenecks for wildlife are linked to spillover of infectious diseases to humans. Hendra virus is a bat-borne pathogen in eastern Australia.

View Article and Find Full Text PDF

Maternal investment, body condition and calf growth in humpback whales.

J Physiol

December 2024

Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA.

Given recent declines in North Pacific humpback whale (Megaptera novaeangliae) reproductive output and calf survival, there is additional urgency to better understand how mother-calf pairs allocate energy resources across their migratory cycle. Here, unoccupied aerial system (UAS; or drone) photogrammetry was used to quantify the body size and condition (BC) of humpback whales on their Hawai'i (HI) breeding and Southeast Alaska (SEAK) feeding grounds. Between 2018 and 2022, we collected 2410 measurements of 1659 individuals.

View Article and Find Full Text PDF

Energetic cost of gestation and prenatal growth in humpback whales.

J Physiol

December 2024

Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.

Improving our understanding of energy allocation in reproduction is key for accurately parameterizing bioenergetic models to assess population responses to environmental perturbations and anthropogenic disturbance. We quantified the energetic cost of gestation in humpback whales (Megaptera novaeangliae) using historical whaling records, non-invasive unoccupied aerial system (UAS) photogrammetry and post mortem tissue samples. First, we estimated relative birth size using body length measurements of 678 mother-fetus pairs from historical whaling records and 987 mother-calf pairs measured in situ using UAS-photogrammetry.

View Article and Find Full Text PDF

Characterization of the structural and electron transport properties of single chiral molecules provides critical insights into the interplay between their electronic structure and electrochemical environments, providing broader implications given the significance of molecular chirality in chiroptical applications and pharmaceutical sciences. Here, we examined the topographic and electronic features of a recently developed chiral molecule, B,N-embedded double hetero[7]helicene, at the edge of Cu(100)-supported NaCl thin film with scanning tunneling microscopy and spectroscopy. An electron transport energy gap of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!