Arabidopsis pab1, a mutant with reduced anthocyanins in immature seeds from banyuls, harbors a mutation in the MATE transporter FFT.

Plant Mol Biol

Ion Beam Mutagenesis Research Group, Medical and Biotechnological Application Unit, Quantum Beam Science Center, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, 370-1292, Japan.

Published: January 2016

Forward genetics approaches have helped elucidate the anthocyanin biosynthetic pathway in plants. Here, we used the Arabidopsis banyuls (ban) mutant, which accumulates anthocyanins, instead of colorless proanthocyanidin precursors, in immature seeds. In contrast to standard screens for mutants lacking anthocyanins in leaves/stems, we mutagenized ban plants and screened for mutants showing differences in pigmentation of immature seeds. The pale banyuls1 (pab1) mutation caused reduced anthocyanin pigmentation in immature seeds compared with ban. Immature pab1 ban seeds contained less anthocyanins and flavonols than ban, but showed normal expression of anthocyanin biosynthetic genes. In contrast to pab1, introduction of a flavonol-less mutation into ban did not produce paler immature seeds. Map-based cloning showed that two independent pab1 alleles disrupted the MATE-type transporter gene FFT/DTX35. Complementation of pab1 with FFT confirmed that mutation in FFT causes the pab1 phenotype. During development, FFT promoter activity was detected in the seed-coat layers that accumulate flavonoids. Anthocyanins accumulate in the vacuole and FFT fused to GFP mainly localized in the vacuolar membrane. Heterologous expression of grapevine MATE-type anthocyanin transporter gene partially complemented the pab1 phenotype. These results suggest that FFT acts at the vacuolar membrane in anthocyanin accumulation in the Arabidopsis seed coat, and that our screening strategy can reveal anthocyanin-related genes that have not been found by standard screening.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-015-0389-8DOI Listing

Publication Analysis

Top Keywords

immature seeds
20
anthocyanin biosynthetic
8
pigmentation immature
8
transporter gene
8
pab1 phenotype
8
vacuolar membrane
8
pab1
7
immature
6
seeds
6
fft
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!