The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to weaken and retreat eastward in the mid-troposphere in response to global warming, accompanied by an eastward expansion of East Asian rain belt along the northwestern flank of WNPSH. Weakened meridional temperature gradient on the northern flank of WNPSH and the associated thermal wind account for the weakened WNPSH in the mid troposphere. We recommend the WNPSH be measured by eddy geopotential height (He) instead of traditionally used geopotential height, especially in climate change studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660429PMC
http://dx.doi.org/10.1038/srep16771DOI Listing

Publication Analysis

Top Keywords

wnpsh
9
enhanced weakened
8
western north
8
north pacific
8
pacific subtropical
8
subtropical high
8
east asian
8
global warming
8
climate change
8
flank wnpsh
8

Similar Publications

Globally, marine heatwaves (MHWs) are becoming more common, more intense, and longer-lasting. They could have a large ecological and societal impact when compounded by low oxygen concentrations or high acidity. Here, using a high-resolution satellite product and reanalysis datasets, we investigated the characteristics of the MHW at northern Yellow Sea (NYS) during mid-summer 2018 and the driving mechanisms of large-scale atmospheric circulations.

View Article and Find Full Text PDF

Emergent constraints on future projections of the western North Pacific Subtropical High.

Nat Commun

June 2020

School of Atmospheric Sciences & Joint International Research Laboratory of Atmospheric and Earth System Sciences, Nanjing University, Nanjing, 210023, China.

The western North Pacific Subtropical High (WNPSH) is a key circulation system controlling the summer monsoon and typhoon activities over the western Pacific, but future projections of its changes remain hugely uncertain. Here we find two leading modes that account for nearly 80% intermodel spread in its future projection under a high emission scenario. They are linked to a cold-tongue-like bias in the central-eastern tropical Pacific and a warm bias beneath the marine stratocumulus, respectively.

View Article and Find Full Text PDF

Variation of the western North Pacific subtropical high (WNPSH) is an important meteorological factor for determining summertime rainfall and temperature over East Asia. Here, three major modes of summertime WNPSH variability are identified and corresponding environmental changes are investigated using cyclostationary empirical orthogonal function analysis. The leading mode exhibits a clear reinforcement of WNPSH associated with global warming.

View Article and Find Full Text PDF

The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive.

View Article and Find Full Text PDF

North Pacific subtropical high (NPSH) is permanent high-pressure system over the Northern Pacific Ocean and it extends to the western North Pacific during the boreal summer (June-July-August), which is so called the western North Pacific subtropical high (WNPSH). Here, we examine the covariability of the NPSH-WNPSH during summer using both observation and Coupled Model Intercomparison Project phase 5 (CMIP5) model data. The statistical analyses indicate that the NPSH-WNPSH covariability shows significant decadal variability in the observations, in addition, the in-phase relationship of NPSH-WNPSH is enhanced after the mid-to-late 1990s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!