Blooms of benthic dinoflagellates of the genus Ostreopsis (mainly O. cf. ovata and occasionally O. cf. siamensis) represent a serious concern for humans in the Mediterranean area, due to production of palytoxin-like compounds listed among the most potent marine toxins known. In this work, six strains of Ostreopsis sp. from Cyprus Island were analyzed through an integrated approach based on molecular, chemical, and eco-toxicological methods. Cypriot Ostreopsis sp. was found to be a species distinct from O. cf. ovata and O. cf. siamensis, belonging to the Atlantic/Mediterranean Ostreopsis spp. clade. Some variability in toxin profiles emerged: three strains produced ovatoxin-a (OVTX-a), OVTX-d, OVTX-e, and isobaric palytoxin, so far found only in O. cf. ovata; the other three strains produced only new palytoxin-like compounds, which we named ovatoxin-i, ovatoxin-j1, ovatoxin-j2, and ovatoxin-k. The new ovatoxins present the same carbon skeleton as ovatoxin-a, differing primarily in an additional C2H2O2 moiety and an unsaturation in the region C49-C52. Other minor structural differences were found, including the presence of a hydroxyl group at C44 (in OVTX-j1 and OVTX-k) and the lack of a hydroxyl group in the region C53-C78 (in OVTX-i and OVTX-j1). The toxin content of the analyzed Ostreopsis sp. strains was in the range 0.06-2.8 pg cell(-1), definitely lower than that of a Ligurian O. cf. ovata strain cultured under the same conditions. Accordingly, an eco-toxicological test on Artemia salina nauplii demonstrated that Ostreopsis sp. presents a very low toxicity compared to O. cf. ovata. The whole of these data suggest that Ostreopsis sp. from Cyprus Island poses a relatively low risk to humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-015-9183-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!