Purpose: In chronic myelogenous leukemia (CML), leukemic stem cells (LSC) represent a critical target of therapy. However, little is known about markers and targets expressed by LSCs. The aim of this project was to identify novel relevant markers of CML LSCs.
Experimental Design: CML LSCs were examined by flow cytometry, qPCR, and various bioassays. In addition, we examined the multipotent CD25(+)CML cell line KU812.
Results: In contrast to normal hematopoietic stem cells, CD34(+)/CD38(-)CML LSCs expressed the IL-2 receptor alpha chain, IL-2RA (CD25). STAT5 was found to induce expression of CD25 in Lin(-)/Sca-1(+)/Kit(+)stem cells in C57Bl/6 mice. Correspondingly, shRNA-induced STAT5 depletion resulted in decreased CD25 expression in KU812 cells. Moreover, the BCR/ABL1 inhibitors nilotinib and ponatinib were found to decrease STAT5 activity and CD25 expression in KU812 cells and primary CML LSCs. A CD25-targeting shRNA was found to augment proliferation of KU812 cellsin vitroand their engraftmentin vivoin NOD/SCID-IL-2Rγ(-/-)mice. In drug-screening experiments, the PI3K/mTOR blocker BEZ235 promoted the expression of STAT5 and CD25 in CML cells. Finally, we found that BEZ235 produces synergistic antineoplastic effects on CML cells when applied in combination with nilotinib or ponatinib.
Conclusions: CD25 is a novel STAT5-dependent marker of CML LSCs and may be useful for LSC detection and LSC isolation in clinical practice and basic science. Moreover, CD25 serves as a growth regulator of CML LSCs, which may have biologic and clinical implications and may pave the way for the development of new more effective LSC-eradicating treatment strategies in CML.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817228 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-15-0767 | DOI Listing |
Adv Sci (Weinh)
December 2024
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
The application of tyrosine kinase inhibitors (TKIs) has revolutionized the management of chronic myeloid leukemia (CML). However, disease relapse and progression particularly due to persistent leukemia stem cells (LSCs) remain a big challenge in the clinic. Therefore, validation of the therapeutic vulnerability in LSCs is urgently needed.
View Article and Find Full Text PDFOncogene
November 2024
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
Tyrosine kinase inhibitors (TKIs) are highly effective in the treatment of patients with chronic myeloid leukemia (CML), but fail to eliminate leukemia stem cells (LSCs), which can lead to disease relapse or progression. It is urgently need to identify the regulators specifically driving LSCs. In this study, we identified DEAD-box helicase 3 X-linked (DDX3X), a ubiquitously expressed RNA helicase, as a critical regulator for CML LSCs by using patient samples and BCR-ABL-driven CML mouse model.
View Article and Find Full Text PDFElife
November 2024
Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden.
The advent of tyrosine kinase inhibitors (TKIs) as treatment of chronic myeloid leukemia (CML) is a paradigm in molecularly targeted cancer therapy. Nonetheless, TKI-insensitive leukemia stem cells (LSCs) persist in most patients even after years of treatment and are imperative for disease progression as well as recurrence during treatment-free remission (TFR). Here, we have generated high-resolution single-cell multiomics maps from CML patients at diagnosis, retrospectively stratified by BCR::ABL1 (%) following 12 months of TKI therapy.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
Patients with chronic myeloid leukemia (CML) respond to tyrosine kinase inhibitors (TKIs); however, CML leukemic stem cells (LSCs) exhibit BCR::ABL kinase-independent growth and are insensitive to TKIs, leading to disease relapse. To prevent this, new therapies targeting CML-LSCs are needed. Rates of mitochondria-mediated oxidative phosphorylation (OXPHOS) in CD34CML cells within the primitive CML cell population are higher than those in normal undifferentiated hematopoietic cells; therefore, the inhibition of OXPHOS in CML-LSCs may be a potential cure for CML.
View Article and Find Full Text PDFCancers (Basel)
August 2024
UMR 6041 CNRS/Université de Poitiers, "Channels and Connexins in Cancer and Cell Stemness", Pôle Biologie Santé, 1, rue Georges Bonnet, 86021 Poitiers CEDEX, France.
Background: A major issue in Chronic Myeloid Leukemia (CML) is the persistence of quiescent leukemia stem cells (LSCs) in the hematopoietic niche under tyrosine kinase inhibitor (TKI) treatment.
Results: Here, using CFSE sorting, we show that low-proliferating CD34+ cells from CML patients in 3D co-culture hide under HS27A stromal cells during TKI treatment-a behavior less observed in untreated cells. Under the same conditions, Ba/F3p210 cells lose their spontaneous motility.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!