The increased summertime prevalence of cattle carriage of enterohemorrhagic Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) is associated with the increased summertime incidence of human infection. The mechanism driving the seasonality of STEC O157 carriage among cattle is unknown. We conducted experimental challenge trials to distinguish whether factors extrinsic or intrinsic to cattle underlie the seasonality of STEC O157 colonization. Holstein steers (n = 20) exposed to ambient environmental conditions were challenged with a standardized pool of STEC O157 strains four times at 6-month intervals. The densities and durations of rectoanal junction mucosa (RAJ) colonization with STEC O157 were compared by season (winter versus summer), dose (10(9) CFU versus 10(7) CFU), and route of challenge (oral versus rectal). Following summer challenges, the RAJ STEC O157 colonization density was significantly lower (P = 0.016) and the duration was shorter (P = 0.052) than for winter challenges, a seasonal pattern opposite to that observed naturally. Colonization was unaffected by the challenge route, indicating that passage through the gastrointestinal microbiome did not significantly affect the infectious dose to the RAJ. A 2-log reduction of the challenge doses in the second-year trials was accompanied by similarly reduced RAJ colonization in both seasons (P < 0.001). These results refute the hypothesis that cattle are predisposed to STEC O157 colonization during the summer months, either due to intrinsic factors or indirectly due to gastrointestinal tract microbiome effects. Instead, the data support the hypothesis that the increased summertime STEC O157 colonization results from increased seasonal oral exposure to this pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725274PMC
http://dx.doi.org/10.1128/AEM.02839-15DOI Listing

Publication Analysis

Top Keywords

stec o157
32
increased summertime
16
o157 colonization
16
escherichia coli
8
coli o157h7
8
colonization
8
colonization increased
8
stec
8
o157
8
seasonality stec
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!