Discordant associations of lipid parameters with albuminuria and chronic kidney disease: a population-based study.

Lipids Health Dis

Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China.

Published: November 2015

Background: Although dyslipidemia is related to the pathogenesis of renal insufficiency, which routinely available lipid measure is more applicable in estimation of kidney function is still uncertain. Our objective was to evaluate inconsistent associations of lipid profiles with both albuminuria and chronic kidney disease (CKD).

Methods: We performed a population-based study in 9730 subjects aged 40 years or older. Definitions of abnormalities in albumin excretion were according to the latest guidelines of American Diabetes Association's Standards of Medical Care. CKD was defined as estimated glomerular filtration rate (eGFR) < 60 mL/min per 1.73 m(2) or the presence of albuminuria.

Results: There were 2274 (23.4%) participants categorized as low-grade albuminuria, 639 (6.6%) participants categorized as increased urinary albumin excretion and 689 (7.1%) participants categorized as CKD. Triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), Non HDL-C to HDL-C ratio, TG to HDL-C ratio were significantly correlated with urinary albumin to creatinine ratio (ACR), serum creatinine and eGFR (all P < 0.0001). Compare with other lipid parameters, TG to HDL-C ratio have shown the strongest correlation with increased odds of both increased urinary albumin excretion and CKD. No significant associations between lipid parameters and low-grade albuminuria were observed after adjustments for potential confounding factors.

Conclusion: Our study lends support to discordant associations of lipid parameters with albuminuria and renal function. TG to HDL-C ratio is a better marker than other routine lipid measures for identifying renal insufficiency and should be given more consideration in the clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660634PMC
http://dx.doi.org/10.1186/s12944-015-0153-8DOI Listing

Publication Analysis

Top Keywords

associations lipid
8
albuminuria chronic
8
chronic kidney
8
kidney disease
8
population-based study
8
discordant associations
4
lipid parameters
4
parameters albuminuria
4
disease population-based
4
study background
4

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Associations between anthropogenic heat emissions and serum lipids among adults in northeastern China.

Int J Environ Health Res

January 2025

Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.

Few epidemiological studies have investigated associations between anthropogenic heat emissions (AE) and serum lipids. We recruited 15,477 adults from 33 communities in northeastern China in 2009. We estimated AE flux by using data on energy consumption and socio-economic statistics covering building, transportation, industry, and human metabolism.

View Article and Find Full Text PDF

Membrane Proteins in Nanodiscs: Methods and Applications.

ChemMedChem

January 2025

Nankai University, State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, 94 Weijin Road, 300071, Tianjin, CHINA.

Membrane proteins, a principal class of drug targets, play indispensable roles in various biological processes and are closely associated with essential life functions. Their study, however, is complicated by their low solubility in aqueous environments and distinctive structural characteristics, necessitating a suitable native-like environment for molecular analysis. Nanodisc technology has revolutionized this field, providing biochemists with a powerful tool to stabilize membrane proteins and significantly enhance their research possibilities.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.

View Article and Find Full Text PDF

The study evaluated the anti-hyperlipidemic effects of myrcenol and curzerene on a high fat diet induced hyperlipidemia rat model. Thirty male albino rats were fed on a high-fat diet for four months. The HFD-induced hyperperlipidemia rats were treated with rosuvastatin (10 mg/kg), curzerene (130 mg/kg) and myrcenol (100 mg/kg) for four weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!