Although the pathogenesis of diabetic retinopathy (DR) is still insufficiently understood, new evidences indicate 'retinal inflammation' as an important player in the pathogenesis of the complication. Accordingly, common sets of upregulated inflammatory cytokines are found in serum, vitreous and aqueous samples obtained from subjects with DR, and these cytokines can have multiple interactions to impact the pathogenesis of the disease. Thus, based on previously published data, we investigated the effects of Palmitoylethanolamide (PEA), an endogenous lipid amide that belongs to the N-acyl-ethanolamines family, on DR in streptozotocin (STZ)-induced diabetic rats. PEA (10mg/kg) was administered orally daily starting 3 days after the iv administration of STZ. The rats were killed 15 and 60day later and eyes were enucleated to evaluate, through immunohistochemical analysis, the key inflammatory events involved in the breakdown of blood retinal barrier (BRB). Immunohistochemical analysis confirmed the presence of VEGF, ICAM-1, nitrotyrosine (a marker of peroxynitrite), and tight junctions in the retina of STZ-treated rats. Of interest, the extent of injury was significantly reduced after treatment with PEA. Altogether, this study provides the first evidence that PEA attenuates the degree of inflammation while preserving the blood-retinal barrier in rats with experimental DR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2015.11.035DOI Listing

Publication Analysis

Top Keywords

diabetic rats
8
immunohistochemical analysis
8
rats
5
palmitoylethanolamide treatment
4
treatment reduces
4
reduces retinal
4
retinal inflammation
4
inflammation streptozotocin-induced
4
streptozotocin-induced diabetic
4
rats pathogenesis
4

Similar Publications

Role of antioxidative stress activity of Fucoxanthin nanoparticle as hepatoprotective in diabetic rats.

Pak J Pharm Sci

January 2025

Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.

This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.

View Article and Find Full Text PDF

Ice plant () is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. : The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS.

View Article and Find Full Text PDF

Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.

View Article and Find Full Text PDF

Therapeutic Potential of Ketogenic Interventions for Autosomal-Dominant Polycystic Kidney Disease: A Systematic Review.

Nutrients

December 2024

Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia.

Background: Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!