The use of transcranial direct current stimulation (tDCS) to enhance cognitive and motor functions has enjoyed a massive increase in popularity. Modifying neuroplasticity via non-invasive cortical stimulation has enormous potential to slow or even reverse declines in functions associated with ageing. The current meta-analysis evaluated the effects of tDCS on cognitive and motor performance in healthy older adults. Of the 81 studies identified, 25 qualified for inclusion. A random effects model meta-analysis revealed a significant overall standardized mean difference equal to 0.53 (SE=0.09; medium heterogeneity: I(2)=57.08%; and high fail-safe: N=448). Five analyses on moderator variables indicated significant tDCS beneficial effects: (a) on both cognitive and motor task performances, (b) across a wide-range of cognitive tasks, (c) on specific brain areas, (d) stimulation offline (before) or online (during) the cognitive and motor tasks. Although the meta-analysis revealed robust support for enhancing both cognitive and motor performance, we outline a number of caveats on the use of tDCS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arr.2015.11.004DOI Listing

Publication Analysis

Top Keywords

cognitive motor
24
transcranial direct
8
direct current
8
current stimulation
8
enhance cognitive
8
motor functions
8
motor performance
8
meta-analysis revealed
8
cognitive
7
motor
6

Similar Publications

ERP correlates of agency processing in joint action.

Soc Cogn Affect Neurosci

January 2025

Department of Psychology, University of Essex, Colchester, United Kingdom.

In the Ouija board phenomenon, the lack of agency experienced by the players leads them to attribute the movement of the planchette to spirits. The aim of this study was to investigate the neural and cognitive mechanisms involved in generating the sense of agency in such a joint action context. Two players (a participant and a confederate) jointly moved a Ouija board style planchette containing a wireless mouse.

View Article and Find Full Text PDF

Despite significant progress in understanding the factors influencing cognitive function in Parkinson's disease (PD), there is a notable gap in data representation for the Latinx population. This study aims to evaluate the contributors to and disparities in cognitive performance among Latinx patients with PD. A retrospective analysis was conducted based on cross-sectional data encompassing demographic, environmental, motor, and non-motor disease characteristics from the Latin American Research Consortium on the Genetics of PD (LARGE-PD) and the Parkinson's Progression Markers Initiative (PPMI) cohorts.

View Article and Find Full Text PDF

Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with the age at which characteristic symptoms manifest strongly influenced by inherited HTT CAG length. Somatic CAG expansion occurs throughout life and understanding the impact of somatic expansion on neurodegeneration is key to developing therapeutic targets. In 57 HD gene expanded (HDGE) individuals, ~23 years before their predicted clinical motor diagnosis, no significant decline in clinical, cognitive or neuropsychiatric function was observed over 4.

View Article and Find Full Text PDF

The manner in which neural activity unfolds over time is thought to be central to sensory, motor and cognitive functions in the brain. Network models have long posited that the brain's computations involve time courses of activity that are shaped by the underlying network. A prediction from this view is that the activity time courses should be difficult to violate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!