A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional activity of L-carnitine transporters in human airway epithelial cells. | LitMetric

Functional activity of L-carnitine transporters in human airway epithelial cells.

Biochim Biophys Acta

Dept. of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy. Electronic address:

Published: February 2016

AI Article Synopsis

  • Carnitine is crucial for transporting long-chain fatty acids into mitochondria for energy production, primarily facilitated by the OCTN transporter family, especially OCTN2.
  • In specific human airway epithelial cells (A549, Calu-3, NCl-H441, BEAS-2B), carnitine uptake relies on sodium and involves different transport mechanisms depending on the cell type.
  • The study identifies high-affinity and low-affinity components for carnitine transport, highlighting their potential importance in conditions of carnitine deficiency, particularly related to defects in OCTN2.

Article Abstract

Carnitine plays a physiologically important role in the β-oxidation of fatty acids, facilitating the transport of long-chain fatty acids across the inner mitochondrial membrane. Distribution of carnitine within the body tissues is mainly performed by novel organic cation transporter (OCTN) family, including the isoforms OCTN1 (SLC22A4) and OCTN2 (SLC22A5) expressed in human. We performed here a characterization of carnitine transport in human airway epithelial cells A549, Calu-3, NCl-H441, and BEAS-2B, by means of an integrated approach combining data of mRNA/protein expression with the kinetic and inhibition analyses of L-[(3)H]carnitine transport. Carnitine uptake was strictly Na(+)-dependent in all cell models. In A549 and BEAS-2B cells, carnitine uptake was mediated by one high-affinity component (Km<2 μM) identifiable with OCTN2. In both these cell models, indeed, carnitine uptake was maximally inhibited by betaine and strongly reduced by SLC22A5/OCTN2 silencing. Conversely, Calu-3 and NCl-H441 exhibited both a high (Km~20 μM) and a low affinity (Km>1 mM) transport component. While the high affinity component is identifiable with OCTN2, the low affinity uptake is mediated by ATB(0,+), a Na(+), and Cl(-)-coupled transport system for neutral and cationic amino acids, as demonstrated by the inhibition by leucine and arginine, as well as by SLC6A14/ATB(0,+) silencing. The presence of this transporter leads to a massive accumulation of carnitine inside the cells and may be of peculiar relevance in pathologic conditions of carnitine deficiency, such as those associated to OCTN2 defects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2015.11.013DOI Listing

Publication Analysis

Top Keywords

human airway
8
airway epithelial
8
epithelial cells
8
cells carnitine
8
fatty acids
8
carnitine uptake
8
uptake mediated
8
carnitine
7
transport
5
functional activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!