Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs).

J Chem Theory Comput

PULSE Institute and Department of Chemistry, Stanford University, Stanford, California 94305, United States.

Published: April 2011

It has recently been demonstrated that novel streaming architectures found in consumer video gaming hardware such as graphical processing units (GPUs) are well-suited to a broad range of computations including electronic structure theory (quantum chemistry). Although recent GPUs have developed robust support for double precision arithmetic, they continue to provide 2-8× more hardware units for single precision. In order to maximize performance on GPU architectures, we present a technique of dynamically selecting double or single precision evaluation for electron repulsion integrals (ERIs) in Hartree-Fock and density functional self-consistent field (SCF) calculations. We show that precision error can be effectively controlled by evaluating only the largest integrals in double precision. By dynamically scaling the precision cutoff over the course of the SCF procedure, we arrive at a scheme that minimizes the number of double precision integral evaluations for any desired accuracy. This dynamic precision scheme is shown to be effective for an array of molecules ranging in size from 20 to nearly 2000 atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct100701wDOI Listing

Publication Analysis

Top Keywords

double precision
12
dynamic precision
8
electron repulsion
8
graphical processing
8
processing units
8
units gpus
8
precision
8
single precision
8
precision electron
4
repulsion integral
4

Similar Publications

Highly Strained Polymeric Monolayer Stacked for Wafer-Scale and Transferable Nanodielectrics.

ACS Nano

December 2024

Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.

As the keystones of molecular electronics, high-quality nanodielectric layers are challenging to assemble due to the strictest criteria for their reliability and uniformity over a large area. Here, we report a strained poly(4-vinylphenol) monolayer, ready to be stacked to form defect-free wafer-scale nanodielectrics. The thickness of the nanodielectrics can be precisely adjusted in integral multiples of the 1.

View Article and Find Full Text PDF

A new prediction model based on deep learning for pig house environment.

Sci Rep

December 2024

School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar, 161006, China.

A prediction model of the pig house environment based on Bayesian optimization (BO), squeeze and excitation block (SE), convolutional neural network (CNN) and gated recurrent unit (GRU) is proposed to improve the prediction accuracy and animal welfare and take control measures in advance. To ensure the optimal model configuration, the model uses a BO algorithm to fine-tune hyper-parameters, such as the number of GRUs, initial learning rate and L2 normal form regularization factor. The environmental data are fed into the SE-CNN block, which extracts the local features of the data through convolutional operations.

View Article and Find Full Text PDF

This manuscript describes the successful synthesis of FeO nanoparticles coated with β-cyclodextrin-intercalated layered double hydroxide, which were utilized to remove Uranium (VI) from an aqueous solution effectively. The newly developed nano-adsorbent underwent thorough analysis through advanced techniques such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and energy-dispersive X-ray analysis (EDX). Through the utilization of a one-variable-at-a-time strategy, we effectively enhanced the removal process by optimizing key factors such as the sample's pH and the amount of adsorbent utilized.

View Article and Find Full Text PDF

Gene targeting (GT) is a powerful tool for manipulating endogenous genomic sequences as intended. However, its efficiency is rather low, especially in seed plants. Numerous attempts have been made to improve the efficiency of GT via the CRISPR/Cas systems in plants, but these have not been sufficiently effective to be used routinely by everyone.

View Article and Find Full Text PDF

Cholangiocarcinoma Targeted Therapies: Mechanisms of Action and Resistance.

Am J Pathol

December 2024

Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts. Electronic address:

Cholangiocarcinoma is an aggressive bile duct malignancy with heterogeneous genomic features. Although most patients receive standard-of-care chemotherapy/immunotherapy, genomic changes that can be targeted with established or emerging therapeutics are common. Accordingly, precision medicine strategies are transforming the next-line treatment for patient subsets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!