Oscillator Strengths in ONIOM Excited State Calculations.

J Chem Theory Comput

Gaussian, Inc., 340 Quinnipiac St., Bldg. 40, Wallingford, Connecticut 06492, United States, and Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States.

Published: January 2011

We compute oscillator strengths with the ONIOM (Our own N-layer Integrated molecular Orbital molecular Mechanics) hybrid method between ground and valence excited states and compare the results with the high level of theory equation of motion coupled cluster singles and doubles (EOM-CCSD). This work follows our previous studies in which we validated the ability of ONIOM to compute accurate transition energies compared to EOM-CCSD. We test various levels of theory and molecular systems, as well as the effect of the link atom bond length. Our results show that oscillator strengths can be accurately computed with ONIOM, provided that a sensible choice of the partitioning and of the low level method is made. Being able to calculate both the transition energy and the oscillator strength, ONIOM represents a promising approach to completely characterize valence excited states of molecules that are too large to be studied with a conventional high-accuracy method.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct1006289DOI Listing

Publication Analysis

Top Keywords

oscillator strengths
12
strengths oniom
8
valence excited
8
excited states
8
oniom
5
oscillator
4
oniom excited
4
excited state
4
state calculations
4
calculations compute
4

Similar Publications

Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators.

View Article and Find Full Text PDF

Multiresonant fluorophores are a novel class of organic luminophores with a narrow emission spectrum. They can yield organic light-emitting devices, e.g.

View Article and Find Full Text PDF

Green approach to synthesis polymer composites based on chitosan with desired linear and non-linear optical characteristics.

Sci Rep

January 2025

Turning Trash to Treasure Laboratory (TTTL), Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq.

The current study used sustainable and green approaches to convey polymer composites with desired optical properties. The extracted green tea dye (GTD) enriched with ligands was used to synthesize zinc metal complexes. Green chitosan biopolymer incorporated with green synthesized metal complex using casting technique was used to deliver polymer composites with improved optical properties.

View Article and Find Full Text PDF

Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort.

View Article and Find Full Text PDF

Observing quantum mechanical characteristics in biological processes is a surprising and important discovery. One example, which is gaining more experimental evidence and practical applications, is the effect of weak magnetic fields with extremely low frequencies on cells, especially cancerous ones. In this study, we use a mathematical model of ROS dynamics in cancer cells to show how ROS oscillatory patterns can act as a resonator to amplify the small effects of the magnetic fields on the radical pair dynamics in mitochondrial Complex III.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!