Diabetic nephropathy develops in association with hyperglycemia, is aggravated by atherogenic factors such as dyslipidemia, and is sometimes initiated before obvious hyperglycemia is seen. However, the precise mechanisms of progression are still unclear. In this study, we investigated the influence of an atherogenic Paigen diet (PD) on the progression of nephropathy in spontaneous type 2 diabetic OLETF rats. Feeding PD to male OLETF rats for 12 weeks caused an extensive increase in excretion of urinary albumin and markers of tubular injury such as KIM-1 and L-FABP, accompanied by mesangial expansion and tubular atrophy. PD significantly increased plasma total cholesterol concentration, which correlates well with increases in urine albumin excretion and mesangial expansion. Conversely, PD did not change plasma glucose and free fatty acid concentrations. PD enhanced renal levels of mRNA for inflammatory molecules such as KIM-1, MCP-1, TLR4 and TNF-α and promoted macrophage infiltration and lipid accumulation in the tubulointerstitium and glomeruli in OLETF rats. Intriguingly, PD had little effect on urine albumin excretion and renal morphology in normal control LETO rats. This model may be useful in studying the complex mechanisms that aggravate diabetic nephropathy in an atherogenic environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659596PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143979PLOS

Publication Analysis

Top Keywords

oletf rats
16
type diabetic
8
diabetic oletf
8
diabetic nephropathy
8
mesangial expansion
8
urine albumin
8
albumin excretion
8
rats
5
atherogenic
4
atherogenic paigen-diet
4

Similar Publications

, known as Aonori in Japan, is an edible alga species that is mass-cultivated in Japan. Supplementation with Aonori-derived biomaterials has been reported to enhance metabolic health in previous studies. This was an experimental study that evaluated the metabolic health effects of NBF2, a formula made of algal and -derived biomaterials, on obesity and type 2 diabetes (T2DM).

View Article and Find Full Text PDF

Effects of -Fermented Milk on Obesity: Improved Lipid Metabolism through Suppression of Lipogenesis and Enhanced Muscle Metabolism.

Int J Mol Sci

September 2024

Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan.

Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and , have garnered attention for their potential in obesity prevention.

View Article and Find Full Text PDF

Diabetes induces a range of macrovascular and microvascular changes, which lead to significant clinical complications. Although many studies have tried to solve the diabetic problem using drugs, it remains unclear. In this study, we investigated whether resistance exercise affects cardiovascular factors and inflammatory markers in diabetes.

View Article and Find Full Text PDF

Purpose: Bladder dysfunction associated with type 2 diabetes mellitus (T2DM) includes urine storage and voiding disorders. We examined pathological conditions of the bladder wall in a rat T2DM model and evaluated the effects of the phosphodiesterase-5 (PDE-5) inhibitor tadalafil.

Materials And Methods: Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats and Long-Evans Tokushima Otsuka (LETO) rats were used as the T2DM and control groups, respectively.

View Article and Find Full Text PDF

Chronic inflammation in adipose tissue is thought to contribute to insulin resistance, which involves the gut microbiota. Our previous studies have demonstrated that ingestion of 1-kestose can alter the gut microbiota composition, increase cecal butyrate levels, and improve insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Additionally, we found that 1-kestose supplementation ameliorated insulin resistance in obese rat models fed a high-fat diet (HFD), although the effects of 1-kestose on the abundance of inflammation-related gene in adipose tissue and gut microbiota composition in these rats were not explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!