A Strategy to Determine Appropriate Active Orbitals and Accurate Magnetic Couplings in Organic Magnetic Systems.

J Chem Theory Comput

Laboratoire de Chimie et Physique Quantiques, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France.

Published: November 2012

This work addresses the following paradox observed in diradicalar conjugated hydrocarbons: while the natural orbitals occupation numbers clearly indicate only two open-shell orbitals, i.e. two unpaired electrons, the minimal CAS zero-order description fails to reproduce accurately the electronic structures of the lowest states (spin density distribution and singlet-triplet energy gap, i.e., magnetic coupling). We will focus on the question of the optimization of both magnetic and nonmagnetic orbitals for the determination of accurate magnetic interactions in organic compounds. It is analytically demonstrated (in the Appendix) and numerically shown from multireference configuration interaction calculations performed on a series of original organic ferro- and antiferromagnetic compounds that, (i) some double excitations must be considered to obtain reliable magnetic orbitals for the calculation of magnetic couplings, (ii) the account of these excitations results in a larger spatial extent of the magnetic orbitals on the surrounding ligands and hence better drives the interaction between several magnetic centers, and (iii) the reliability of the orbitals is a crucial ingredient for the determination of accurate magnetic couplings. A strategy which optimizes the orbitals at a reasonable computational cost is proposed. It relies on a CAS(2,2) zero-order description and provides orbitals of the same quality as the CAS(full valence π)SCF orbitals. The values of the magnetic couplings computed using the difference dedicated configuration interaction on top of the CAS(2,2) references with the new orbital set are very close to those obtained at the much more computationally demanding CAS(full valence π)PT2 level of treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct300577yDOI Listing

Publication Analysis

Top Keywords

magnetic couplings
16
accurate magnetic
12
magnetic
11
orbitals
10
zero-order description
8
determination accurate
8
configuration interaction
8
magnetic orbitals
8
casfull valence
8
strategy determine
4

Similar Publications

Exploring Mosquito Excreta as an Alternative Sample Type for Improving Arbovirus Surveillance in Australia.

Pathogens

January 2025

Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC 3220, Australia.

Current arbovirus surveillance strategies in Australia involve mosquito collection, species identification, and virus detection. These processes are labour-intensive, expensive, and time-consuming and can lead to delays in reporting. Mosquito excreta has been proposed as an alternative sample type to whole mosquito collection, with potential to streamline the virus surveillance pipeline.

View Article and Find Full Text PDF

A new compound [Y(sq)(HO)] (Y-sq; sq = squarate (CO)) was prepared and structurally characterized. Since the RE-sq family (RE = Y, Dy, Yb, Lu) gave isostructural crystals, the objective of this study is to explore the effects of diamagnetic dilution on the SIM behavior through systematic investigation and comparison of diamagnetically diluted and undiluted forms. The 1%-Diluted Dy compounds, Dy@Y-sq and Dy@Lu-sq, showed AC magnetic susceptibility peaks without any DC bias field (), whereas undiluted Dy-sq showed no AC out-of-phase response under the same conditions.

View Article and Find Full Text PDF

Crystal Structure and Magnetic Properties of the Novel Compound ErMnGe.

Materials (Basel)

January 2025

MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

The RE-M-Ge systems (RE: rare earths, M: transition group elements) contain a large number of compounds with special magnetic properties. A novel compound ErMnGe was found during the investigation on the phase diagram of the Er-Mn-Ge ternary system, and its crystal structure and magnetic properties were investigated. Powder X-ray diffraction results show that ErMnGe crystallizes in an orthorhombic YNiSi-type structure with the space group Pnma (No.

View Article and Find Full Text PDF

All-Fiber Micro-Ring Resonator Based p-Si/n-ITO Heterojunction Electro-Optic Modulator.

Materials (Basel)

January 2025

State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy & Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

With the rapid advancement of information technology, the data demands in transmission rates, processing speed, and storage capacity have been increasing significantly. However, silicon electro-optic modulators, characterized by their weak electro-optic effect, struggle to balance modulation efficiency and bandwidth. To overcome this limitation, we propose an electro-optic modulator based on an all-fiber micro-ring resonator and a p-Si/n-ITO heterojunction, achieving high modulation efficiency and large bandwidth.

View Article and Find Full Text PDF

An electromagnetic vibration energy harvester with a 2:1:2 internal resonance (IR) is proposed, allowing for the simultaneous activation of two IRs within the system in order to enhance its performance in terms of bandwidth and harvested power. The device consists of three magnetically coupled oscillators separated by an adjustable gap to tune the system eigenfrequencies and achieve a 2:1:2 IR. Numerical investigations are conducted to predict the behavior of the proposed device, and a multi-objective optimization procedure is employed to enhance the harvester's performance by introducing mass perturbations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!