Circulating tumour cells (CTCs) have potential utility as minimally-invasive biomarkers to aid cancer treatment decision making. However, many current CTC technologies enrich CTCs using specific surface epitopes that do not necessarily reflect CTC heterogeneity. Here we evaluated the epitope-independent Parsortix system which enriches CTCs based on size and rigidity using both healthy normal volunteer blood samples spiked with tumour cells and blood samples from patients with small cell lung cancer (SCLC). Blood samples were maintained unfractionated at room temperature for up to 4 days followed by plasma removal for circulating free DNA (cfDNA) isolation and direct application of the remaining cell component to the Parsortix system. For tumour cells expressing the EpCAM cell surface marker the numbers of spiked cells retained using the Parsortix system and by EpCAM-positive selection using CellSearch® were not significantly different, whereas only the Parsortix system showed strong enrichment of cells with undetectable EpCAM expression. In a pilot clinical study we banked both enriched CTCs as well as plasma from SCLC patient blood samples. Upon retrieval of the banked Parsortix cellular samples we could detect cytokeratin positive CTCs in all 12 SCLC patients tested. Interestingly, processing parallel samples from the same patients by EpCAM enrichment using CellSearch® revealed only 83% (10/12) with cytokeratin positive CTCs indicating the Parsortix system is enriching for EpCAM negative SCLC CTCs. Our combined results indicate the Parsortix system is a valuable tool for combined cfDNA isolation and CTC enrichment that enables CTC analysis to be extended beyond dependence on surface epitopes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5an02156a | DOI Listing |
J Exp Clin Cancer Res
August 2024
Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
Circulating Tumor Cells (CTCs) may serve as a non-invasive source of tumor material to investigate an individual's disease in real-time. The Parsortix PC1 System, the first FDA-cleared medical device for the capture and harvest of CTCs from peripheral blood of metastatic breast cancer (MBC) patients for use in subsequent user-validated downstream analyses, enables the epitope-independent capture of CTCs with diverse phenotypes based on cell size and deformability. The aim of this study was to determine the proportion of MBC patients and self-declared female healthy volunteers (HVs) that had CTCs identified using immunofluorescence (IF) or Wright-Giemsa (WG) staining.
View Article and Find Full Text PDFMol Oncol
August 2024
Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland.
Circulating tumor cells (CTCs) have potential as diagnostic, prognostic, and predictive biomarkers in solid tumors. Despite Food and Drug Administration (FDA) approval of CTC devices in various cancers, the rarity and heterogeneity of CTCs in lung cancer make them technically challenging to isolate and analyze, hindering their clinical integration. Establishing a consensus through comparative analysis of different CTC systems is warranted.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2024
ANGLE plc, Guildford GU2 7QB, UK.
The study of molecular drivers of cancer is an area of rapid growth and has led to the development of targeted treatments, significantly improving patient outcomes in many cancer types. The identification of actionable mutations informing targeted treatment strategies are now considered essential to the management of cancer. Traditionally, this information has been obtained through biomarker assessment of a tissue biopsy which is costly and can be associated with clinical complications and adverse events.
View Article and Find Full Text PDFCancers (Basel)
November 2023
Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany.
Circulating tumor cells (CTCs) serve as crucial metastatic precursor cells, but their study in animal models has been hindered by their low numbers. To address this challenge, we present DanioCTC, an innovative xenograft workflow that overcomes the scarcity of patient-derived CTCs in animal models. By combining diagnostic leukapheresis (DLA), the Parsortix microfluidic system, flow cytometry, and the CellCelector setup, DanioCTC effectively enriches and isolates CTCs from metastatic breast cancer (MBC) patients for injection into zebrafish embryos.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany.
Disseminated tumor cells (DTCs) in the bone marrow (BM) of breast cancer (BC) patients are putative precursors of metastatic disease, and their presence is associated with an adverse clinical outcome. To achieve the personalization of therapy on a clinical routine level, the characterization of DTCs and in vitro drug testing on DTCs are of great interest. Therefore, biobanking methods, as well as novel approaches to DTC isolation, need to be developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!