Transforming growth factor-β1-mediated cardiac fibrosis: potential role in HIV and HIV/antiretroviral therapy-linked cardiovascular disease.

AIDS

aDivision of Hematology and Medical OncologybDivision of Nephrology and Hypertension, Weill Cornell Medical College, New YorkcCardiovascular Biology Research Program, Oklahoma Medical Research Foundation and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.

Published: February 2016

HIV infection elevates the incidence of cardiovascular disease (CVD) independent of traditional risk factors. Autopsy series document cardiac inflammation and endomyocardial fibrosis in the HIV+ treatment naïve, and gadolinium enhancement magnetic resonance imaging has identified prominent myocardial fibrosis in the majority of HIV+ individuals despite use of suppressive antiretroviral therapies (ART). The extent of such disease may correlate with specific ART regimens. For example, HIV-infected patients receiving ritonavir (RTV)-boosted protease inhibitors have the highest prevalence of CVD, and RTV-exposed rodents exhibit cardiac dysfunction coupled with cardiac and vascular fibrosis, independent of RTV-mediated lipid alterations. We recently showed that platelet transforming growth factor (TGF)-β1 is a key contributor to cardiac fibrosis in murine models. We hypothesize that in the HIV+/ART naïve, cardiac fibrosis is a consequence of proinflammatory cytokine and/or ART-linked platelet activation with release of TGF-β1. Resultant TGF-β1/Smad signaling would promote collagen synthesis and organ fibrosis. We document these changes in a pilot immunohistochemical evaluation of cardiac tissue from two ART-naive pediatric AIDS patients. In terms of ART, we showed that RTV inhibits immunoproteasome degradation of TRAF6, a nuclear adapter signaling molecule critical to the regulation of proinflammatory cytokine signaling pathways involved in osteoclast differentiation and accelerated osteoporosis. We now present a model illustrating how RTV could similarly amplify TGF-β1 signaling in the promotion of cardiac fibrosis and accelerated CVD. Supportive clinical data correlate RTV use with elevation of NT-proBNP, a biomarker for CVD. We discuss potential interventions involving intrinsic modulators of inflammation and collagen degradation, including carbon monoxide-based therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738098PMC
http://dx.doi.org/10.1097/QAD.0000000000000982DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
16
transforming growth
8
cardiac
8
fibrosis
8
cardiovascular disease
8
proinflammatory cytokine
8
growth factor-β1-mediated
4
factor-β1-mediated cardiac
4
fibrosis potential
4
potential role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!