Our previous findings have demonstrated that autophagy regulation can alleviate the decline of learning and memory by eliminating deposition of extracellular beta-amyloid peptide (Aβ) in the brain after stroke, but the exact mechanism is unclear. It is presumed that the regulation of beta-site APP-cleaving enzyme 1 (BACE1), the rate-limiting enzyme in metabolism of Aβ, would be a key site. Neuro-2a/amyloid precursor protein 695 (APP695) cell models of cerebral ischemia were established by oxygen-glucose deprivation to investigate the effects of Rapamycin (an autophagy inducer) or 3-methyladenine (an autophagy inhibitor) on the expression of BACE1. Either oxygen-glucose deprivation or Rapamycin down-regulated the expression of BACE1 while 3-methyladenine up-regulated BACE1 expression. These results confirm that oxygen-glucose deprivation down-regulates BACE1 expression in Neuro-2a/APP695 cells through the introduction of autophagy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625509 | PMC |
http://dx.doi.org/10.4103/1673-5374.165511 | DOI Listing |
Cell Mol Neurobiol
January 2025
Pharmacy Department, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
Drug Des Devel Ther
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.
Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.
J Biochem Mol Toxicol
February 2025
Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China.
Ischemia-reperfusion (I/R) injury is a significant clinical problem impacting the heart and other organs, such as the kidneys and liver. This study explores the protective effects of oxycodone on myocardial I/R injury and its underlying mechanisms. Using a myocardial I/R model in Sprague-Dawley (SD) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in H9c2 cells, we administered oxycodone and inhibited AMP-activated protein kinase (AMPK) with Compound C (C.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China. Electronic address:
Hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Cognitive impairment may persist after successful resuscitation from hemorrhagic shock, but the mechanisms remain elusive. This study demonstrated the presence of ferroptosis in an in vitro model of oxygen-glucose deprivation and reoxygenation (OGD/R) in HT22 neurons, and also in a murine model of HSR using 3-month-old C57BL/6 mice.
View Article and Find Full Text PDFApoptosis
January 2025
Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!