In this study the interactions between Serish root inulin and the main biopolymer types of wheat flour namely gluten, starch and phospholipid, were investigated in different model systems using Fourier transform infrared (FTIR) spectroscopy to unravel the underlying physical mechanism by which inulin impacts dough and bread properties. Interactions of inulin with starch and phospholipid were not considerable compared to gluten, but it was also clear that the modes of these interactions varied with the type and the amount of additives used in model formulation. This study revealed that when inulin is added to gluten, water redistribution promotes partial dehydration of gluten and collapse of β-spirals into intermolecular β-sheet structures; this trans-conformations might be due to physical reasons are believed to further impact the poor quality of bread containing added inulin. Upon performing Gaussian-Lorenzian curve fitting, it was observed that by adding of inulin to model systems, the relative contribution of characteristic peaks of β-turn and intramolecular β-sheet was progressively decreased whereas intermolecular β-sheet and α-helix contents were increased.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648905PMC
http://dx.doi.org/10.1007/s13197-015-1939-4DOI Listing

Publication Analysis

Top Keywords

model systems
12
bread properties
8
starch phospholipid
8
intermolecular β-sheet
8
inulin
7
serish inulin
4
inulin wheat
4
wheat biopolymers
4
interactions
4
biopolymers interactions
4

Similar Publications

Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care.

View Article and Find Full Text PDF

We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the generalized fluctuation-dissipation theorem. The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics. We numerically validate our approach using time-series data from three different stochastic partial differential equations of increasing complexity: an Ornstein-Uhlenbeck process with spatially correlated noise, a modified stochastic Allen-Cahn equation, and the 2D Navier-Stokes equations.

View Article and Find Full Text PDF

We consider many-particle diffusion in one spatial dimension modeled as "random walks in a random environment." A shared short-range space-time random environment determines the jump distributions that drive the motion of the particles. We determine universal power laws for the environment's contribution to the variance of the extreme first passage time and extreme location.

View Article and Find Full Text PDF

Exact Quantization of Topological Order Parameter in SU(N) Spin Models, N-ality Transformation and Ingappabilities.

Phys Rev Lett

December 2024

RIKEN, Condensed Matter Theory Laboratory, CPR, Wako, Saitama 351-0198, Japan.

We show that the ground-state expectation value of twisting operator is a topological order parameter for U(1)- and Z_{N}-symmetric symmetry-protected topological (SPT) phases in one-dimensional "spin" systems-it is quantized in the thermodynamic limit and can be used to identify different SPT phases and to diagnose phase transitions among them. We prove that this (nonlocal) order parameter must take values in Nth roots of unity, and its value can be changed by a generalized lattice translation acting as an N-ality transformation connecting distinct phases. This result also implies the Lieb-Schultz-Mattis (LSM) ingappability for SU(N) spins if we further impose a general translation symmetry.

View Article and Find Full Text PDF

Probing Critical States of Matter on a Digital Quantum Computer.

Phys Rev Lett

December 2024

Quantinuum, 303 S. Technology Court, Broomfield, Colorado 80021, USA.

Although quantum mechanics underpins the microscopic behavior of all materials, its effects are often obscured at the macroscopic level by thermal fluctuations. A notable exception is a zero-temperature phase transition, where scaling laws emerge entirely due to quantum correlations over a diverging length scale. The accurate description of such transitions is challenging for classical simulation methods of quantum systems, and is a natural application space for quantum simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!