Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4787024PMC
http://dx.doi.org/10.1038/hdy.2015.98DOI Listing

Publication Analysis

Top Keywords

gene flow
12
genetic differentiation
8
sibling allopolyploids
8
allopolyploids dactylorhiza
8
dactylorhiza majalis
8
majalis traunsteineri
8
phenotypic divergence
8
differentiation admixture
4
sibling
4
admixture sibling
4

Similar Publications

Simultaneous and Ultraspecific Optical Detection of Multiple miRNAs Using a Liquid Flow-Based Microfluidic Assay.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.

Recent studies have reported that the cause and progression of many diseases are closely related to complex and diverse gene regulation involving multiple microRNAs (miRNAs). However, most existing methods for miRNA detection typically deal with one sample at a time, which limits the achievement of high diagnostic accuracy for diseases associated with multiple gene dysregulations. Herein, we develop a liquid flow-based microfluidic optical assay for the simple and reliable detection of two different target miRNAs simultaneously at room temperature without any enzymatic reactions.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a disease of the central nervous system, characterized by progressive demyelination and inflammation. MS is characterized by immune system attacks on the myelin sheath surrounding nerve fibers. Genome-wide association studies revealed a polymorphism in the signal transducer and activator of transcription 4 (STAT4) gene that increases risk for MS.

View Article and Find Full Text PDF

Impact of Fli1 deletion on B cell populations: A focus on age-associated B cells and transcriptional dynamics.

J Dermatol Sci

December 2024

Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan. Electronic address:

Background: Altered Fli1 expression is associated with various autoimmune diseases, yet its impact on B cells remains unexplored.

Objective: This study investigated the direct effects of Fli1 depletion on B cell populations, focusing on age-associated B cells (ABCs).

Methods: Splenocytes of Fli1 BcKO (Cd19-Cre; Fli1) and Cd19-Cre mice were analyzed flow cytometrically.

View Article and Find Full Text PDF

UGP2, a novel target gene of TP53, inhibits endothelial cells apoptosis and atherosclerosis.

Life Sci

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:

The dysfunction of the endothelial lining in lesion-prone areas of the arterial vasculature significantly contributes to the pathobiology of atherosclerotic cardiovascular disease. Recent studies suggested that UDP-glucose pyrophosphorylase 2 (UGP2) plays a role in cell proliferation and survival. This study investigates the anti-apoptotic and anti-atherogenic effects of UGP2 both in vitro and in vivo.

View Article and Find Full Text PDF

High expression of ARPC1B promotes the proliferation and Apoptosis of clear cell renal cell carcinoma cells, leading to a poor prognosis.

Mol Cell Probes

January 2025

Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China; Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450003, China. Electronic address:

Background: ARPC1B has been identified as a key regulator of malignant biological behavior in various tumors. However, its specific role in clear cell renal cell carcinoma (ccRCC) remains poorly understood. This study aims to evaluate the influence of ARPC1B on the prognosis and disease progression in ccRCC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!