Respiratory syncytial virus (RSV) infection can increase the production of IL-33 in lungs of mice. However, little is known about cellular source of IL-33, particularly the types of IL-33-producing cells in innate immune cells during RSV infection. In this study, by using BALB/c mice that were infected intranasally with RSV, it became clear that RSV infection can enhance not only the number of IL-33(+)-alveolar macrophages (AMs) and dendritic cells (DCs), but also the expression of IL-33 mRNA in these cells, suggesting that innate immune cells participate in the production of IL-33. Indeed, in vitro experiments by using murine cell lines found that RSV infection results in more expression of IL-33 mRNA in AMs and DCs, further confirming that these cell types may be an important source of IL-33 during RSV infection. It should be noted that the expression of mRNA for TLR3 and TLR7 was up-regulated in pulmonary AMs during RSV infection. Blockade of TLRs by TLR3 or TLR7 antagonist significantly reduces the levels of IL-33 mRNA in AMs and DCs, suggesting that RSV-induced IL-33 production might be TLRs-dependent manner. Although the expression of TLRs mRNA in pulmonary interstitial macrophages (IMs) was enhanced after RSV infection, stimulation with agonists or inactivated RSV cannot alter the expression of IL-33 mRNA in IMs, suggesting that pulmonary IMs may not be a source of IL-33 during RSV infection. Thus, these results demonstrate that during RSV infection, respiratory macrophages and dendritic cells mediate the production of IL-33 in a TLR-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2015.10.022 | DOI Listing |
Vaccines (Basel)
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and children. mRNA vaccines based on the lipopolyplex (LPP) platform have been previously reported, but they remain unapplied in RSV vaccine development. In this study, we developed a novel LPP-delivered mRNA vaccine that expresses the respiratory syncytial virus prefusion protein (RSV pre-F) to evaluate its immunogenicity and protective effect in a mouse model.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Pfizer Ltd., Tadworth KT20 7NY, UK.
Background/objectives: Respiratory syncytial virus (RSV) is a leading cause of respiratory infections in children. A novel RSVpreF vaccine for use among pregnant women for the prevention of RSV in infants is expected to be licensed in Mexico. Hence, the clinical and economic burden of RSV among infants in Mexico, with and without a year-round RSVpreF maternal vaccination program, was estimated.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Liverna Therapeutics Inc., Zhuhai 519000, China.
Background: Respiratory syncytial virus (RSV) causes the most common type of severe lower respiratory tract infection worldwide, and the fusion (F) protein is a target for neutralizing antibodies and vaccine development. This study aimed to investigate the immunogenicity and efficacy of an mRNA-based RSV vaccine with an F protein sequence.
Methods: We designed an mRNA construct encoding a modified RSV F protein, which was further developed into an LNP-encapsulated mRNA vaccine (LVRNA007).
Vaccines (Basel)
January 2025
Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA.
The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Drug Safety Research and Development, Pfizer Research & Development, Pearl River, NY 10965, USA.
: Respiratory syncytial virus (RSV) infections usually cause mild, cold-like symptoms in most people, but are a leading infectious disease causing infant death and hospitalization and can result in increased morbidity and mortality in older adults and at-risk individuals. Pfizer has developed Abrysvo, an unadjuvanted bivalent recombinant protein subunit vaccine containing prefusion-stabilized fusion (F) proteins representing RSV A and RSV B subgroups (RSVpreF). It is the only RSV vaccine approved for both maternal immunization to protect infants and active immunization of older adults (≥60 years) and 18-59-year-old individuals with high-risk conditions for prevention of RSV disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!